sort by

18 publications mentioning dre-mir-181a-3

Open access articles that are associated with the species Danio rerio and mention the gene name mir-181a-3. Click the [+] symbols to view sentences that include the gene name, or the word cloud on the right for a summary.

1
[+] score: 42
Other miRNAs from this paper: dre-mir-7b, dre-mir-7a-1, dre-mir-7a-2, dre-mir-34a, dre-mir-181b-1, dre-mir-181b-2, dre-mir-182, dre-mir-183, dre-mir-181a-1, dre-mir-219-1, dre-mir-219-2, dre-mir-221, dre-mir-222a, dre-mir-430a-1, dre-mir-430b-1, dre-mir-430c-1, dre-let-7a-1, dre-let-7a-2, dre-let-7a-3, dre-let-7a-4, dre-let-7a-5, dre-let-7a-6, dre-let-7b, dre-let-7c-1, dre-let-7c-2, dre-let-7d-1, dre-let-7d-2, dre-let-7e, dre-let-7f, dre-let-7g-1, dre-let-7g-2, dre-let-7h, dre-let-7i, dre-mir-7a-3, dre-mir-9-1, dre-mir-9-2, dre-mir-9-4, dre-mir-9-3, dre-mir-9-5, dre-mir-9-6, dre-mir-9-7, dre-mir-92b, dre-mir-96, dre-mir-100-1, dre-mir-100-2, dre-mir-124-1, dre-mir-124-2, dre-mir-124-3, dre-mir-124-4, dre-mir-124-5, dre-mir-124-6, dre-mir-125b-1, dre-mir-125b-2, dre-mir-125b-3, dre-mir-128-1, dre-mir-128-2, dre-mir-132-1, dre-mir-132-2, dre-mir-135c-1, dre-mir-135c-2, dre-mir-137-1, dre-mir-137-2, dre-mir-138-1, dre-mir-153a, dre-mir-181c, dre-mir-200a, dre-mir-218a-1, dre-mir-218a-2, dre-mir-219-3, dre-mir-375-1, dre-mir-375-2, dre-mir-454a, dre-mir-430c-2, dre-mir-430c-3, dre-mir-430c-4, dre-mir-430c-5, dre-mir-430c-6, dre-mir-430c-7, dre-mir-430c-8, dre-mir-430c-9, dre-mir-430c-10, dre-mir-430c-11, dre-mir-430c-12, dre-mir-430c-13, dre-mir-430c-14, dre-mir-430c-15, dre-mir-430c-16, dre-mir-430c-17, dre-mir-430c-18, dre-mir-430a-2, dre-mir-430a-3, dre-mir-430a-4, dre-mir-430a-5, dre-mir-430a-6, dre-mir-430a-7, dre-mir-430a-8, dre-mir-430a-9, dre-mir-430a-10, dre-mir-430a-11, dre-mir-430a-12, dre-mir-430a-13, dre-mir-430a-14, dre-mir-430a-15, dre-mir-430a-16, dre-mir-430a-17, dre-mir-430a-18, dre-mir-430i-1, dre-mir-430i-2, dre-mir-430i-3, dre-mir-430b-2, dre-mir-430b-3, dre-mir-430b-4, dre-mir-430b-6, dre-mir-430b-7, dre-mir-430b-8, dre-mir-430b-9, dre-mir-430b-10, dre-mir-430b-11, dre-mir-430b-12, dre-mir-430b-13, dre-mir-430b-14, dre-mir-430b-15, dre-mir-430b-16, dre-mir-430b-17, dre-mir-430b-18, dre-mir-430b-5, dre-mir-430b-19, dre-mir-430b-20, dre-let-7j, dre-mir-181a-2, dre-mir-34b, dre-mir-34c, dre-mir-222b, dre-mir-138-2, dre-mir-181a-4, dre-mir-181a-5, dre-mir-181b-3, dre-mir-181d, dre-mir-128-3
miR-181a and miR-181b show similar expression in the larval brain, and this is largely conserved to adult stages (although there is down-regulation in some areas such as thalamus and tegmentum; 13 and 14, and Tables C and H in7). [score:6]
This pattern is highly reminiscent of expression of the huC gene (Figure 2i), which encodes an RNA binding protein expressed in nearly all CNS neurons but the same subsets of retinal cells as miR-181a and miR-181b. [score:5]
miR-181a and miR-181b belong to the same family but differ in three nucleotides outside the seed region, suggesting that LNA probes can discriminate between their transcript expression profiles (Tables K and L in8, and9). [score:3]
Click here for file 3 miR-181a expression in the zebrafish brain. [score:3]
miR-181a expression in the zebrafish brain. [score:3]
The constitutive expression of miRNAs such as miR-124, miR-181, miR-222 and others in mature neurons is consistent with an initial role in the clearance of mRNAs from the neuronal precursor stage but later they may fulfill a different role in the surveillance of fluctuations in aberrant transcription from notionally 'silenced' loci. [score:3]
Other miRNAs with expression in the retina include miR-454a (Figure C in5), miR-132 (Figure E in5), miR-125b (Figure F in5) and miR-181a (Figure G in3). [score:3]
Despite overall conservation, we noticed differences in expression of miR-181a and miR-181b that were not obvious at larval stages. [score:3]
Additional data file 13 is a figure showing miR-181a expression in the zebrafish brain. [score:3]
Figure 4Conserved and divergent expression of miR-181a and miR-181b. [score:3]
We compared the adult brain expression of miRNAs belonging to the same family, such as miR-181a and miR-181b, or cluster, such as miR-221 and miR-222, that differ in three and four nucleotides, respectively; LNA probes should, therefore, discriminate each of them. [score:2]
In contrast, two mismatches in the miR-181a probe are sufficient to eliminate specific in situ hybridization signal, supporting the conclusion that probes with two or more different internal nucleotides detect signal from a single miRNA and not others with similar sequence [36]. [score:1]
A cluster on chromosome 8 contains both miR-181a and miR-181b but there is an additional copy of miR-181a on chromosome 22 and of miR-181b on chromosome 20 [19, 44]. [score:1]
Mismatch test for let-7a, miR-92b, miR-153a and miR-181a. [score:1]
Click here for file 9Mismatch test for let-7a, miR-92b, miR-153a and miR-181a. [score:1]
Additional data file 29 is a figure showing a mismatch test for let-7a, miR-92b, miR-153a and miR-181a. [score:1]
[1 to 20 of 16 sentences]
2
[+] score: 27
Cichocki et al. demonstrated that nemo-like kinase (NLK), an inhibitor of Notch signaling, is a target of miR-181 in natural killer cell (NK) cells, and knockdown of NLK mirrors the developmental effect of miR-181 overexpression. [score:9]
Li et al. found that increasing miR-181a expression in mature T cells augments their sensitivity to peptide antigens, while inhibiting miR-181a expression in immature T cells reduces sensitivity and impairs both positive and negative selection [28]. [score:7]
Therefore, they concluded that miR-181 can promote NK cell development, at least in part, through the suppression of NLK [29]. [score:4]
Studies on these miRNAs in mammals indicate that miR-181 is involved in multiple roles in immune regulation and disease. [score:4]
The most highly expressed miRNA family in channel catfish was ipu-miR-181 (1,781,434 reads). [score:3]
[1 to 20 of 5 sentences]
3
[+] score: 16
Other miRNAs from this paper: dre-mir-10a, dre-mir-10b-1, dre-mir-204-1, dre-mir-181a-1, dre-mir-214, dre-mir-222a, dre-mir-430a-1, dre-mir-430b-1, dre-mir-430c-1, dre-let-7a-1, dre-let-7a-2, dre-let-7a-3, dre-let-7a-4, dre-let-7a-5, dre-let-7a-6, dre-let-7b, dre-let-7c-1, dre-let-7c-2, dre-let-7d-1, dre-let-7d-2, dre-let-7e, dre-let-7f, dre-let-7g-1, dre-let-7g-2, dre-let-7h, dre-let-7i, dre-mir-10b-2, dre-mir-10c, dre-mir-10d, dre-mir-17a-1, dre-mir-17a-2, dre-mir-21-1, dre-mir-21-2, dre-mir-22a, dre-mir-22b, dre-mir-25, dre-mir-26a-1, dre-mir-26a-2, dre-mir-26a-3, dre-mir-30d, dre-mir-92a-1, dre-mir-92a-2, dre-mir-92b, dre-mir-100-1, dre-mir-100-2, dre-mir-125a-1, dre-mir-125a-2, dre-mir-125b-1, dre-mir-125b-2, dre-mir-125b-3, dre-mir-125c, dre-mir-126a, dre-mir-143, dre-mir-146a, dre-mir-462, dre-mir-202, dre-mir-204-2, dre-mir-430c-2, dre-mir-430c-3, dre-mir-430c-4, dre-mir-430c-5, dre-mir-430c-6, dre-mir-430c-7, dre-mir-430c-8, dre-mir-430c-9, dre-mir-430c-10, dre-mir-430c-11, dre-mir-430c-12, dre-mir-430c-13, dre-mir-430c-14, dre-mir-430c-15, dre-mir-430c-16, dre-mir-430c-17, dre-mir-430c-18, dre-mir-430a-2, dre-mir-430a-3, dre-mir-430a-4, dre-mir-430a-5, dre-mir-430a-6, dre-mir-430a-7, dre-mir-430a-8, dre-mir-430a-9, dre-mir-430a-10, dre-mir-430a-11, dre-mir-430a-12, dre-mir-430a-13, dre-mir-430a-14, dre-mir-430a-15, dre-mir-430a-16, dre-mir-430a-17, dre-mir-430a-18, dre-mir-430i-1, dre-mir-430i-2, dre-mir-430i-3, dre-mir-430b-2, dre-mir-430b-3, dre-mir-430b-4, dre-mir-430b-6, dre-mir-430b-7, dre-mir-430b-8, dre-mir-430b-9, dre-mir-430b-10, dre-mir-430b-11, dre-mir-430b-12, dre-mir-430b-13, dre-mir-430b-14, dre-mir-430b-15, dre-mir-430b-16, dre-mir-430b-17, dre-mir-430b-18, dre-mir-430b-5, dre-mir-430b-19, dre-mir-430b-20, dre-let-7j, dre-mir-181a-2, dre-mir-1388, dre-mir-222b, dre-mir-126b, dre-mir-181a-4, dre-mir-181a-5, dre-mir-204-3
The second most enriched GO term was negative regulation of substrate adhesion -dependent cell spreading (GO:1900025), and contained target mRNA for miR-181a-3p, miR-202-5p, miR-25-3p, miR-30d-5p, miR-430b-3p, miR-92a-3p, and miR-92b-3p. [score:4]
The most enriched GO term was segment polarity determination (GO:0007367), which contained target mRNA for the miR-10 and miR-125 families, as well as miR-181a-5p miR-21-5p, miR-222a-3p, and miR-430b-3p. [score:3]
Several miRNAs, namely let-7a-1–5p, let-7c-5p, let-7d-5p, miR-181a-5p, miR-222a-3p, miR-430b-3p, and miR-462-5p were typically more abundant in earlier stages of gonadal development, whereas miR-100-5p, miR-10a-5p, miR-10b-5p, miR-10c-5p, miR-202-5p, and miR-30d-5p were abundant during later stages of development. [score:3]
In addition, miR-10b-5p, miR-125a-5p, miR-143–3p, miR-181a-5p, and miR-21–5p were among the most abundant miRNAs in at least six of nine gonadal stages (Fig. 4b). [score:1]
miR-181a-5p was highly abundant in Nile tilapia and olive flounder, as well as 12 wpf zebrafish ovaries (Fig. 4), but not highly abundant at 24 wpf ovary or in the related zebrafish study. [score:1]
In contrast, abundance of miR-181a-5p steadily decreased over time. [score:1]
Among the most frequently abundant miRNAs between species were let-7a-5p, miR-143-3p, miR-181a-5p, miR-202-5p, and miR-21-5p (Supplementary Fig. S2B). [score:1]
miR-181a-5p and miR-204-5p were significantly more abundant in both spermatozoa and oocytes. [score:1]
Relative abundance of let-7a-5p, miR-181a-5p, and miR-202-5p varied between different species as well as the two zebrafish studies. [score:1]
[1 to 20 of 9 sentences]
4
[+] score: 16
Other miRNAs from this paper: hsa-let-7a-1, hsa-let-7a-2, hsa-let-7a-3, hsa-let-7b, hsa-let-7c, hsa-let-7d, hsa-let-7e, hsa-let-7f-1, hsa-let-7f-2, hsa-mir-15a, hsa-mir-17, hsa-mir-21, hsa-mir-29a, hsa-mir-96, mmu-let-7g, mmu-let-7i, mmu-mir-124-3, mmu-mir-140, mmu-mir-181a-2, mmu-mir-182, mmu-mir-183, mmu-mir-194-1, mmu-mir-200b, hsa-mir-34a, hsa-mir-181a-2, hsa-mir-181b-1, hsa-mir-181c, hsa-mir-182, hsa-mir-183, hsa-mir-181a-1, hsa-mir-200b, mmu-mir-34c, mmu-mir-34b, mmu-let-7d, hsa-let-7g, hsa-let-7i, hsa-mir-124-1, hsa-mir-124-2, hsa-mir-124-3, hsa-mir-140, hsa-mir-194-1, mmu-let-7a-1, mmu-let-7a-2, mmu-let-7b, mmu-let-7c-1, mmu-let-7c-2, mmu-let-7e, mmu-let-7f-1, mmu-let-7f-2, mmu-mir-15a, mmu-mir-21a, mmu-mir-29a, mmu-mir-96, mmu-mir-34a, mmu-mir-135b, hsa-mir-200c, hsa-mir-181b-2, mmu-mir-17, mmu-mir-200c, mmu-mir-181a-1, mmu-mir-124-1, mmu-mir-124-2, mmu-mir-181b-1, mmu-mir-181c, hsa-mir-194-2, mmu-mir-194-2, hsa-mir-34b, hsa-mir-34c, hsa-mir-376c, hsa-mir-376a-1, mmu-mir-376a, hsa-mir-135b, mmu-mir-181b-2, mmu-mir-376b, dre-mir-34a, dre-mir-181b-1, dre-mir-181b-2, dre-mir-182, dre-mir-183, dre-mir-181a-1, dre-let-7a-1, dre-let-7a-2, dre-let-7a-3, dre-let-7a-4, dre-let-7a-5, dre-let-7a-6, dre-let-7b, dre-let-7c-1, dre-let-7c-2, dre-let-7d-1, dre-let-7d-2, dre-let-7e, dre-let-7f, dre-let-7g-1, dre-let-7g-2, dre-let-7h, dre-let-7i, dre-mir-15a-1, dre-mir-15a-2, dre-mir-17a-1, dre-mir-17a-2, dre-mir-21-1, dre-mir-21-2, dre-mir-29a, dre-mir-96, dre-mir-124-1, dre-mir-124-2, dre-mir-124-3, dre-mir-124-4, dre-mir-124-5, dre-mir-124-6, dre-mir-140, dre-mir-181c, dre-mir-194a, dre-mir-194b, dre-mir-200b, dre-mir-200c, hsa-mir-376b, hsa-mir-181d, hsa-mir-507, dre-let-7j, dre-mir-135b, dre-mir-181a-2, hsa-mir-376a-2, mmu-mir-376c, dre-mir-34b, dre-mir-34c, mmu-mir-181d, mmu-mir-21b, mmu-let-7j, mmu-mir-21c, mmu-let-7k, dre-mir-181a-4, dre-mir-181a-5, dre-mir-181b-3, dre-mir-181d, mmu-mir-124b
The data verified that two miRNAs, miR-29a and -34a, which have been implicated in apoptotic pathways, are up-regulated and the two miRNAs, miR-181 and -183, which have been shown to have roles in proliferation and differentiation, are down-regulated While it is believed that a major cause of ARHL is the death of hair cells, other age-related changes in the central auditory pathways cannot be ruled out. [score:7]
Overexpression of miRNA-181a was indeed able to stimulate proliferation within the basilar papilla, with new cells labeling with the hair cell marker myosin VI. [score:3]
Gene expression analysis of forskolin treated basilar papillae identifies microRNA181a as a mediator of proliferation. [score:2]
miR-181a, which was greatly enriched in the proliferating basilar papilla and as it had previously been identified to have a role in promoting proliferation in a human leukemia cell line, was selected as a hair cell proliferation candidate. [score:1]
A subsequent study further explored miR-181a involvement in the pro-proliferative processes in chickens (Frucht et al., 2011). [score:1]
Cells were transfected with pre-miRNA181a or anti-miR181a and imaged. [score:1]
A significant number of new hair cells could be observed, providing a role of miR-181a in the pro-proliferative process. [score:1]
[1 to 20 of 7 sentences]
5
[+] score: 12
Other miRNAs from this paper: hsa-let-7a-1, hsa-let-7a-2, hsa-let-7a-3, hsa-let-7b, hsa-let-7e, hsa-mir-20a, hsa-mir-21, hsa-mir-23a, hsa-mir-24-1, hsa-mir-24-2, hsa-mir-26b, hsa-mir-27a, hsa-mir-29a, hsa-mir-31, hsa-mir-29b-1, hsa-mir-29b-2, hsa-mir-103a-2, hsa-mir-103a-1, hsa-mir-199a-1, hsa-mir-148a, hsa-mir-7-1, hsa-mir-7-2, hsa-mir-7-3, hsa-mir-10b, hsa-mir-181a-2, hsa-mir-181b-1, hsa-mir-181c, hsa-mir-199a-2, hsa-mir-199b, hsa-mir-203a, hsa-mir-204, hsa-mir-212, hsa-mir-181a-1, hsa-mir-221, hsa-mir-23b, hsa-mir-27b, hsa-mir-128-1, hsa-mir-132, hsa-mir-133a-1, hsa-mir-133a-2, hsa-mir-143, hsa-mir-200c, hsa-mir-181b-2, hsa-mir-128-2, hsa-mir-200a, hsa-mir-30e, hsa-mir-148b, hsa-mir-338, hsa-mir-133b, dre-mir-7b, dre-mir-7a-1, dre-mir-7a-2, dre-mir-10b-1, dre-mir-181b-1, dre-mir-181b-2, dre-mir-199-1, dre-mir-199-2, dre-mir-199-3, dre-mir-203a, dre-mir-204-1, dre-mir-181a-1, dre-mir-221, dre-mir-222a, dre-let-7a-1, dre-let-7a-2, dre-let-7a-3, dre-let-7a-4, dre-let-7a-5, dre-let-7a-6, dre-let-7b, dre-let-7e, dre-mir-7a-3, dre-mir-10b-2, dre-mir-20a, dre-mir-21-1, dre-mir-21-2, dre-mir-23a-1, dre-mir-23a-2, dre-mir-23a-3, dre-mir-23b, dre-mir-24-4, dre-mir-24-2, dre-mir-24-3, dre-mir-24-1, dre-mir-26b, dre-mir-27a, dre-mir-27b, dre-mir-29b-1, dre-mir-29b-2, dre-mir-29a, dre-mir-30e-2, dre-mir-101b, dre-mir-103, dre-mir-128-1, dre-mir-128-2, dre-mir-132-1, dre-mir-132-2, dre-mir-133a-2, dre-mir-133a-1, dre-mir-133b, dre-mir-133c, dre-mir-143, dre-mir-148, dre-mir-181c, dre-mir-200a, dre-mir-200c, dre-mir-203b, dre-mir-204-2, dre-mir-338-1, dre-mir-338-2, dre-mir-454b, hsa-mir-181d, dre-mir-212, dre-mir-181a-2, hsa-mir-551a, hsa-mir-551b, dre-mir-31, dre-mir-722, dre-mir-724, dre-mir-725, dre-mir-735, dre-mir-740, hsa-mir-103b-1, hsa-mir-103b-2, dre-mir-2184, hsa-mir-203b, dre-mir-7146, dre-mir-181a-4, dre-mir-181a-5, dre-mir-181b-3, dre-mir-181d, dre-mir-204-3, dre-mir-24b, dre-mir-7133, dre-mir-128-3, dre-mir-7132, dre-mir-338-3
Morphological and histological studies of miR-21, miR-31 and/or miR-181 inhibition combined with identification of target genes would demonstrate their roles in blastema formation. [score:5]
STRING interactions with 11 common blastema -associated genes, miR-21, miR-31, miR-181, and 50 additional common differentially expressed genes with common predicted miRNAs binding sites. [score:3]
Next, we established a gene network for common miRNA target genes for miR-21, miR-31 and miR-181. [score:3]
Although zebrafish miRNAs have been examined in numerous studies [25, 27, 41– 43], our analysis revealed novel paralogs of 18 miRNAs that do not currently have zebrafish records in miRBase (version 21), including miR-181a, miR-20a, miR-23b, miR-24, miR-29a, miR-103, miR-128, miR-148, miR-181b, miR-199, miR-204, miR-212, miR-221, miR-338, miR-724, miR-2184, let-7b and let-7e. [score:1]
[1 to 20 of 4 sentences]
6
[+] score: 9
The targets for miRNAs reported in the following references were tested: a Abramov et al. [51], b: Juanchich et al. [52], c: Yao et al. [53], d: Wei et al. [54], b* whereas in [52] the minor form of miR-181 was reported, here the targets for the major form of miR-181 were tested, because in TargetScanFish 6.2 no targets for miR-181* are available. [score:9]
[1 to 20 of 1 sentences]
7
[+] score: 7
MiR-181a and miR-182 were the highly expressed miRNAs in the brain and pineal gland of zebrafish. [score:3]
The miR-181a is mainly involved in proliferation, and is an active miRNA regulating regeneration process. [score:2]
Rudnicki et al. [21] and Frucht et al. [22] also reported that miR-181a can encourage proliferation in both quiescent and proliferating chick basilar papilla. [score:1]
The maximum read count was observed for miR-181a and miR-182 in the brain and pineal gland, respectively. [score:1]
[1 to 20 of 4 sentences]
8
[+] score: 5
Overexpression of miR-181a, miR-181b, miR-221, miR-222 and miR-451 (10 µM) resulted in no observable phenotype in zebrafish embryos at 2 dpf. [score:3]
Q,R,S and T,U,V - Zebrafish embryos injected with miR-181a and miR-181b respectively display no visible phenotype. [score:1]
The miRNAs that did not produce any visible vascular phenotypes in our screen include miR-181a, miR-181b, miR-221, miR-222 and miR-451. [score:1]
[1 to 20 of 3 sentences]
9
[+] score: 5
Three miRNA families, miR-27, miR-30 and miR-181, were analyzed to determine gain and loss of miRNA family members and changes in their sequences (miRNA sequences were downloaded from miRBase). [score:1]
The situation of gain and loss of family members was observed for miR-181 family as well, suggesting that similar events could be found in other miRNA families. [score:1]
Alignments were carried out within miR-27, miR-30 and miR-181 family of zebrafish and human, respectively (Figure 7). [score:1]
miR-27, miR-30 and miR-181 family members in different lineages. [score:1]
Sequence comparison of miR-27, miR-30 and miR-181 family members in zebrafish and human. [score:1]
[1 to 20 of 5 sentences]
10
[+] score: 5
Other miRNAs from this paper: hsa-let-7a-1, hsa-let-7a-2, hsa-let-7a-3, hsa-let-7b, hsa-let-7c, hsa-let-7d, hsa-let-7e, hsa-let-7f-1, hsa-let-7f-2, hsa-mir-15a, hsa-mir-18a, hsa-mir-21, hsa-mir-27a, hsa-mir-96, hsa-mir-99a, mmu-let-7g, mmu-let-7i, mmu-mir-27b, mmu-mir-30b, mmu-mir-99a, mmu-mir-124-3, mmu-mir-125b-2, mmu-mir-9-2, mmu-mir-135a-1, mmu-mir-181a-2, mmu-mir-182, mmu-mir-183, mmu-mir-199a-1, hsa-mir-199a-1, mmu-mir-200b, hsa-mir-181a-2, hsa-mir-182, hsa-mir-183, hsa-mir-199a-2, hsa-mir-181a-1, hsa-mir-200b, mmu-let-7d, hsa-let-7g, hsa-let-7i, hsa-mir-27b, hsa-mir-30b, hsa-mir-124-1, hsa-mir-124-2, hsa-mir-124-3, hsa-mir-125b-1, hsa-mir-135a-1, hsa-mir-135a-2, hsa-mir-9-1, hsa-mir-9-2, hsa-mir-9-3, hsa-mir-125b-2, mmu-mir-200a, mmu-let-7a-1, mmu-let-7a-2, mmu-let-7b, mmu-let-7c-1, mmu-let-7c-2, mmu-let-7e, mmu-let-7f-1, mmu-let-7f-2, mmu-mir-15a, mmu-mir-18a, mmu-mir-21a, mmu-mir-27a, mmu-mir-96, mmu-mir-135b, mmu-mir-181a-1, mmu-mir-199a-2, mmu-mir-135a-2, mmu-mir-124-1, mmu-mir-124-2, mmu-mir-9-1, mmu-mir-9-3, mmu-mir-125b-1, hsa-mir-200a, hsa-mir-135b, dre-mir-182, dre-mir-183, dre-mir-181a-1, dre-let-7a-1, dre-let-7a-2, dre-let-7a-3, dre-let-7a-4, dre-let-7a-5, dre-let-7a-6, dre-let-7b, dre-let-7c-1, dre-let-7c-2, dre-let-7d-1, dre-let-7d-2, dre-let-7e, dre-let-7f, dre-let-7g-1, dre-let-7g-2, dre-let-7h, dre-let-7i, dre-mir-9-1, dre-mir-9-2, dre-mir-9-4, dre-mir-9-3, dre-mir-9-5, dre-mir-9-6, dre-mir-9-7, dre-mir-15a-1, dre-mir-15a-2, dre-mir-18a, dre-mir-21-1, dre-mir-21-2, dre-mir-27a, dre-mir-27b, dre-mir-27c, dre-mir-27d, dre-mir-27e, dre-mir-30b, dre-mir-96, dre-mir-124-1, dre-mir-124-2, dre-mir-124-3, dre-mir-124-4, dre-mir-124-5, dre-mir-124-6, dre-mir-125b-1, dre-mir-125b-2, dre-mir-125b-3, dre-mir-135c-1, dre-mir-135c-2, dre-mir-200a, dre-mir-200b, dre-let-7j, dre-mir-135b, dre-mir-181a-2, dre-mir-135a, mmu-mir-21b, mmu-let-7j, mmu-mir-21c, mmu-let-7k, dre-mir-181a-4, dre-mir-181a-5, mmu-mir-9b-2, mmu-mir-124b, mmu-mir-9b-1, mmu-mir-9b-3
miR-181a was further studied and was over expressed in chick basilar papilla explants. [score:3]
A few miRNAs were identified in the enrichment analysis, such as miR-181a, miR114, miR-200a and miR-27, suspected as being active miRNAs in the regeneration. [score:1]
These results suggest that miR-181a can encourage proliferation in both quiescent and proliferating chick basilar papilla. [score:1]
[1 to 20 of 3 sentences]
11
[+] score: 4
p. 2 (NPM2): a maternal effect gene regulated by miR-181a. [score:2]
Recently we demonstrated that miR-196a and miR-181a function as negative regulators for two key oocyte-specific maternal effect genes (NOBOX and NPM2) essential for early embryogenesis [33] [29]. [score:2]
[1 to 20 of 2 sentences]
12
[+] score: 3
Furthermore, the top 5 most abundant miRNA families expressed at each stage were selected, including dre-let-7a, dre-miR-1, dre-miR-10a-5p, dre-miR-124, dre-miR-181a-5p, dre-miR-184, dre-miR-192, dre-miR-22a, dre-miR-25, dre-miR-430a and dre-miR-456 families (Figure  5C). [score:3]
[1 to 20 of 1 sentences]
13
[+] score: 3
Emerging evidence has revealed that miRNAs are also present in the CNS [32], [33], where cocaine administration alters the expression of many miRNAs (let-7d, miR-1, miR-124, miR-181a, miR-29b, miR-31, miR-382 and miR-212) in brain regions related to cocaine addiction (nucleus accumbens, ventral tegmental area, prefrontal cortex and dorsal striatum) [34], [35], [36]. [score:3]
[1 to 20 of 1 sentences]
14
[+] score: 3
miR-181 can directly impair porcine reproductive and respiratory syndrome virus replication via specifically binding to a conserved region in the downstream of open reading frame 4 of the viral genomic RNA [31]. [score:2]
miRNAs let-7a, miR-100-5p, miR-10b-5p, miR-125b-5p, miR-146a, miR-181a-5p, miR-21, miR-27c-3p and miR-92a-3p were the most abundant miRNAs (>100,000 reads) in the four samples (Excel S1). [score:1]
[1 to 20 of 2 sentences]
15
[+] score: 3
For example, miR-33a inhibition affects atherosclerosis progression [39]; and miR-181 [38] and miR-22 [42] showed ability to counteract hypertension. [score:3]
[1 to 20 of 1 sentences]
16
[+] score: 3
In this sense, it is known that different exogenous agents can induce the increase or decrease of specific miRNAs, for instance, cocaine administration alters the expression of many miRNAs (miR-1, miR-124, miR-181a, miR-29b, miR-31, miR-382, miR-212 and let-7d) in brain regions related to cocaine addiction (nucleus accumbens, ventral tegmental area, prefrontal cortex and dorsal striatum) [21], [64], [65]. [score:3]
[1 to 20 of 1 sentences]
17
[+] score: 2
d Putative micro -RNA precursor structures and consensus mature sequences (highlighted in yellow) annotated as mir-181a (Alim- mir- 181a1- 3) and mir-10b (Alim- mir- 10b1- 4) The 3379 unique sncRNA sequences mapped to approximately 33,000 locations in the genome, with 61% mapping to intergenic regions and 39% within exons (Additional file 6). [score:1]
d Putative micro -RNA precursor structures and consensus mature sequences (highlighted in yellow) annotated as mir-181a (Alim- mir- 181a1- 3) and mir-10b (Alim- mir- 10b1- 4) The 3379 unique sncRNA sequences mapped to approximately 33,000 locations in the genome, with 61% mapping to intergenic regions and 39% within exons (Additional file 6). [score:1]
[1 to 20 of 2 sentences]
18
[+] score: 1
The hematopoietic enriched miR-181 was the first to be shown to shift progenitor cell differentiation into the specific lineage where it is abundant—B cells [79]. [score:1]
[1 to 20 of 1 sentences]