sort by

4 publications mentioning ppe-MIR395d

Open access articles that are associated with the species Prunus persica and mention the gene name MIR395d. Click the [+] symbols to view sentences that include the gene name, or the word cloud on the right for a summary.

[+] score: 46
Analysis of seven drought-responsive miRNAs by qRT-PCR show that the expression level of miR156 and miR168 were high in leaves and roots under drought stress in comparison to control samples while the expression of miR164 and miR395 was down-regulated in root and leaf tissues of drought-stressed samples. [score:8]
For instance, the decreased expression of miR164 and miR395 promoted the expression of their targets genes in both root and leaf tissues. [score:7]
Up-regulation of any miRNA expression levels was considered a positive value while negative values indicate down-regulation For miR156, miR164, miR166, miR168, miR169, miR171 and miR395, the miRNA stem-loop reverse transcription reaction was performed in a volume of 10 µL containing 2, 20, and 200 ng of total RNA samples of leaf and root samples (1 µL), 0.5 µL 10 mM dNTP mix, 1 µL stem-loop RT primer (1 µM) and 7.5 µL nuclease free water. [score:7]
As another drought-responsive miRNA, miR395 was down-regulated and its expression was restricted to root tissue and was not detected in leaves of peaces (Table 5). [score:6]
The expression level of miR159, miR169, miR393, miR397, miR398 and miR393 were only decreased in root under drought stress while the miR395 were only down-regulated in leaf in response to drought (Figure 4). [score:6]
The target transcripts of Ppe-mir156, Ppe-mir166, Ppe-mir168, Ppe-mir169, Ppe-mir171, and Ppe-mir395 were obtained using psRNATarget (user-submitted transcripts and miRNA option) and BlastN algoritms. [score:5]
The relative expression profile of miR156, miR164, miR168, miR171 and miR395 using qRT-PCR had a good correlation with deep sequencing. [score:3]
qRT-PCR was also used for detection and quantification of predicted targets of six drougt-responsive miRNAs (miR156, miR164, miR166, miR169, miR171 and miR395). [score:3]
Among them, drought responsive miRNAs (miR156, miR164, miR166, miR168, miR169, miR171, and miR395) were detected and their expression levels were measured by qRT-PCR. [score:1]
[1 to 20 of 9 sentences]
[+] score: 16
In our study, the expression levels of 2 known miRNAs were highly up-regulated (miR171d-3p, miR3627-5p) and 6 known miRNAs showed significant down-regulation (miR395d, miR395e, miR399a, miR399b, miR7122b-5p, miR8133-3p). [score:9]
In brief, 8 miRNAs were up-regulated, including Pp03–22,312-3p, Pp03–22,312-5p, Pp05–19,842-3p, Pp06–35,148-3p, Pp06–35,148-5p, miR397, miRNA171d-3p and miRNA3627-5p, and 7 miRNAs were down-regulated, including miRNA395d, miRNA395e, miRNA7122b-5p, miRNA399a, miRNA399b, miRNA8133-3p, and Pp05–28,899-3p in UVB treatment. [score:7]
[1 to 20 of 2 sentences]
[+] score: 5
Other miRNAs from this paper: ptc-MIR156a, ptc-MIR156b, ptc-MIR156c, ptc-MIR156d, ptc-MIR156e, ptc-MIR156f, ptc-MIR156g, ptc-MIR156h, ptc-MIR156i, ptc-MIR156j, ptc-MIR156k, ptc-MIR159a, ptc-MIR159b, ptc-MIR159d, ptc-MIR159e, ptc-MIR159c, ptc-MIR160a, ptc-MIR160b, ptc-MIR160c, ptc-MIR160d, ptc-MIR160e, ptc-MIR160f, ptc-MIR160g, ptc-MIR160h, ptc-MIR164a, ptc-MIR164b, ptc-MIR164c, ptc-MIR164d, ptc-MIR164e, ptc-MIR164f, ptc-MIR166a, ptc-MIR166b, ptc-MIR166c, ptc-MIR166d, ptc-MIR166e, ptc-MIR166f, ptc-MIR166g, ptc-MIR166h, ptc-MIR166i, ptc-MIR166j, ptc-MIR166k, ptc-MIR166l, ptc-MIR166m, ptc-MIR166n, ptc-MIR166o, ptc-MIR166p, ptc-MIR166q, ptc-MIR167a, ptc-MIR167b, ptc-MIR167c, ptc-MIR167d, ptc-MIR167e, ptc-MIR167f, ptc-MIR167g, ptc-MIR167h, ptc-MIR169a, ptc-MIR169aa, ptc-MIR169ab, ptc-MIR169ac, ptc-MIR169ad, ptc-MIR169ae, ptc-MIR169af, ptc-MIR169b, ptc-MIR169c, ptc-MIR169d, ptc-MIR169e, ptc-MIR169f, ptc-MIR169g, ptc-MIR169h, ptc-MIR169i, ptc-MIR169j, ptc-MIR169k, ptc-MIR169l, ptc-MIR169m, ptc-MIR169n, ptc-MIR169o, ptc-MIR169p, ptc-MIR169q, ptc-MIR169r, ptc-MIR169s, ptc-MIR169t, ptc-MIR169u, ptc-MIR169v, ptc-MIR169w, ptc-MIR169x, ptc-MIR169y, ptc-MIR169z, ptc-MIR171a, ptc-MIR171b, ptc-MIR171c, ptc-MIR171d, ptc-MIR171e, ptc-MIR171f, ptc-MIR171g, ptc-MIR171h, ptc-MIR171i, ptc-MIR172a, ptc-MIR172b, ptc-MIR172c, ptc-MIR172d, ptc-MIR172e, ptc-MIR172f, ptc-MIR172g, ptc-MIR172h, ptc-MIR172i, ptc-MIR319a, ptc-MIR319b, ptc-MIR319c, ptc-MIR319d, ptc-MIR319e, ptc-MIR319f, ptc-MIR319g, ptc-MIR319h, ptc-MIR319i, ptc-MIR390a, ptc-MIR390b, ptc-MIR390c, ptc-MIR390d, ptc-MIR393a, ptc-MIR393b, ptc-MIR393c, ptc-MIR395a, ptc-MIR395b, ptc-MIR395c, ptc-MIR395d, ptc-MIR395e, ptc-MIR395f, ptc-MIR395g, ptc-MIR395h, ptc-MIR395i, ptc-MIR395j, ptc-MIR396a, ptc-MIR396b, ptc-MIR396c, ptc-MIR396d, ptc-MIR396e, ptc-MIR396f, ptc-MIR396g, ptc-MIR398a, ptc-MIR398b, ptc-MIR398c, ptc-MIR171k, ptc-MIR171l, ptc-MIR171m, ptc-MIR171j, ptc-MIR1446a, ptc-MIR1446b, ptc-MIR1446c, ptc-MIR1446d, ptc-MIR1446e, ppe-MIR171f, ppe-MIR171h, ppe-MIR171a, ppe-MIR171e, ppe-MIR169e, ppe-MIR398a, ppe-MIR319a, ppe-MIR319b, ppe-MIR171g, ppe-MIR171b, ppe-MIR171c, ppe-MIR398b, ptc-MIR3627a, ptc-MIR156l, ptc-MIR169ag, ptc-MIR395k, ptc-MIR3627b, ppe-MIR156a, ppe-MIR156b, ppe-MIR156c, ppe-MIR156d, ppe-MIR156e, ppe-MIR156f, ppe-MIR156g, ppe-MIR156h, ppe-MIR156i, ppe-MIR159, ppe-MIR160a, ppe-MIR160b, ppe-MIR164a, ppe-MIR164b, ppe-MIR164c, ppe-MIR164d, ppe-MIR166a, ppe-MIR166b, ppe-MIR166c, ppe-MIR166d, ppe-MIR166e, ppe-MIR167a, ppe-MIR167b, ppe-MIR167c, ppe-MIR167d, ppe-MIR169a, ppe-MIR169b, ppe-MIR169c, ppe-MIR169d, ppe-MIR169f, ppe-MIR169g, ppe-MIR169h, ppe-MIR169i, ppe-MIR169j, ppe-MIR169k, ppe-MIR169l, ppe-MIR171d, ppe-MIR172a, ppe-MIR172b, ppe-MIR172c, ppe-MIR172d, ppe-MIR390, ppe-MIR393a, ppe-MIR393b, ppe-MIR395a, ppe-MIR395b, ppe-MIR395c, ppe-MIR395e, ppe-MIR395f, ppe-MIR395g, ppe-MIR395h, ppe-MIR395i, ppe-MIR395j, ppe-MIR395k, ppe-MIR395l, ppe-MIR395m, ppe-MIR395n, ppe-MIR395o, ppe-MIR396a, ppe-MIR396b, ppe-MIR3627
Similar sets of miRNAs, with the exception of miR167 and miR395, were highly expressed in leaves. [score:3]
Most of conserved families common to Arabidopsis and peach (miR156, miR159, miR160, miR164, miR166, miR171, miR172, miR319, miR390, miR395, and miR396) did not show significant size variation (Figure 4). [score:1]
miRNA families such as miR156, miR169, miR172, miR395, and miR5021 have the largest number of members with the latter having 18 members. [score:1]
[1 to 20 of 3 sentences]
[+] score: 1
Mir399* is accumulated at high levels during phosphate deprivation in Arabidopsis and miR395* accumulates at high levels in Sorghum grown in optimal nutrient conditions. [score:1]
[1 to 20 of 1 sentences]