sort by

6 publications mentioning bdi-MIR172d

Open access articles that are associated with the species Brachypodium distachyon and mention the gene name MIR172d. Click the [+] symbols to view sentences that include the gene name, or the word cloud on the right for a summary.

1
[+] score: 13
In addition to activation by CO, FT is regulated by GI through an independent pathway in Arabidopsis where GI upregulates microRNA172 which acts as a repressor of the APETALA 2 (AP2) domain gene TARGET OF EAT1 (TOE1) which in turn encodes a repressor of FT [56]. [score:6]
The position of the conserved miRNA172 target site is also shown. [score:3]
The TOE1 subfamily members have a smaller first AP2 domain due to an internal deletion of 10 amino acids and all contain a miR172 target site. [score:3]
FCA has also been shown to affect the level of miRNA172, providing a link to the photoperiod pathway in Arabidopsis [56]. [score:1]
[1 to 20 of 4 sentences]
2
[+] score: 8
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156c, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR162a, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR171a, osa-MIR393a, osa-MIR394, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR397a, osa-MIR397b, osa-MIR398a, osa-MIR398b, osa-MIR156k, osa-MIR156l, osa-MIR319a, osa-MIR319b, osa-MIR160e, osa-MIR160f, osa-MIR162b, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR393b, osa-MIR172d, osa-MIR171i, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, osa-MIR390, osa-MIR396e, osa-MIR528, osa-MIR529a, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR529b, osa-MIR169r, osa-MIR827, osa-MIR396f, bdi-MIR171a, bdi-MIR167a, bdi-MIR397a, bdi-MIR156a, bdi-MIR166a, bdi-MIR171c, bdi-MIR169b, osa-MIR396g, osa-MIR396h, osa-MIR396d, osa-MIR395x, osa-MIR395y, bdi-MIR169d, bdi-MIR169i, bdi-MIR395a, bdi-MIR169j, bdi-MIR166f, bdi-MIR171b, bdi-MIR390a, bdi-MIR160a, bdi-MIR528, bdi-MIR395b, bdi-MIR166d, bdi-MIR171d, bdi-MIR167b, bdi-MIR166b, bdi-MIR160b, bdi-MIR164b, bdi-MIR167c, bdi-MIR396d, bdi-MIR169k, bdi-MIR168, bdi-MIR160c, bdi-MIR396c, bdi-MIR167d, bdi-MIR156b, bdi-MIR169g, bdi-MIR160d, bdi-MIR160e, bdi-MIR396e, bdi-MIR156c, bdi-MIR172a, bdi-MIR396a, bdi-MIR166e, bdi-MIR166c, bdi-MIR169e, bdi-MIR394, bdi-MIR398a, bdi-MIR164a, bdi-MIR393a, bdi-MIR169a, bdi-MIR172b, bdi-MIR156d, bdi-MIR393b, bdi-MIR169h, bdi-MIR396b, bdi-MIR169c, bdi-MIR395c, bdi-MIR827, bdi-MIR166g, bdi-MIR319a, bdi-MIR395d, bdi-MIR398b, bdi-MIR164c, bdi-MIR169f, bdi-MIR162, bdi-MIR164e, bdi-MIR164f, bdi-MIR395m, bdi-MIR395e, bdi-MIR395f, bdi-MIR395g, bdi-MIR395h, bdi-MIR395j, bdi-MIR395k, bdi-MIR395l, bdi-MIR395n, bdi-MIR529, bdi-MIR319b, bdi-MIR397b, bdi-MIR156e, bdi-MIR156f, bdi-MIR156g, bdi-MIR156h, bdi-MIR156i, bdi-MIR166h, bdi-MIR166i, bdi-MIR167e, bdi-MIR395o, bdi-MIR395p, bdi-MIR156j, bdi-MIR160f, bdi-MIR166j, bdi-MIR167f, bdi-MIR167g, bdi-MIR169l, bdi-MIR169m, bdi-MIR169n, bdi-MIR171e, bdi-MIR171f, bdi-MIR395q
The result showed that the expression of both miR172 and miR397 was up-regulated under the cold treatment (Figure 4). [score:6]
MiR164, miR166 and miR172 were represented by two variants and miR169 was represented by four variants in the library (Table 2). [score:1]
Then, miR169 and miR172 were found to be responsive to cold stress in Arabidopsis both through a computational, transcriptome -based approach and by microarray analysis almost simultaneously [17, 18]. [score:1]
[1 to 20 of 3 sentences]
3
[+] score: 8
Cleavage can be detected for translationally regulated miRNA targets as is the case for miR172 and miR398 targets [16, 85]. [score:8]
[1 to 20 of 1 sentences]
4
[+] score: 4
RAP2.7 is repressed by miR172, which binds to its mRNA, hence preventing translation in the adult phase (Zhu and Halliwell, 2011; Higgins et al. 2010; Aukerman & Sakai, 2003). [score:3]
Jung J. H., Seo Y. H., Seo P. J., Reyes J. L., Yun J., Chua N. H. & Park C. M. (2007) The GIGANTEA regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. [score:1]
[1 to 20 of 2 sentences]
5
[+] score: 3
For the other cold -induced conserved miRNAs, miR172, some of their target genes showed obvious decreases in transcript abundance after cold treatment. [score:3]
[1 to 20 of 1 sentences]
6
[+] score: 3
Because miR156 and miR172 participate in the age -dependent regulation of flowering in diverse plants 12 13, it will be interesting to explore whether alterations in FT2 growth-related AS in B. distachyon is controlled by these two miRNAs during flowering processes. [score:2]
Even beginning with a 5′A, miR172 can be properly loaded into AGO1-silencing effectors as a result of its specific secondary structure 44. [score:1]
[1 to 20 of 2 sentences]