![]() |
miRBase |
![]() |
![]() |
![]() 6 publications mentioning vvi-MIR395dOpen access articles that are associated with the species Vitis vinifera and mention the gene name MIR395d. Click the [+] symbols to view sentences that include the gene name, or the word cloud on the right for a summary. |
|
1 |
![]()
Other miRNAs from this paper: vvi-MIR156a, vvi-MIR156b, vvi-MIR156c, vvi-MIR156d, vvi-MIR156e, vvi-MIR156f, vvi-MIR156g, vvi-MIR156i, vvi-MIR164a, vvi-MIR164b, vvi-MIR164c, vvi-MIR164d, vvi-MIR166a, vvi-MIR166b, vvi-MIR166c, vvi-MIR166d, vvi-MIR166e, vvi-MIR166f, vvi-MIR166g, vvi-MIR166h, vvi-MIR167a, vvi-MIR167b, vvi-MIR167c, vvi-MIR167d, vvi-MIR167e, vvi-MIR168, vvi-MIR169a, vvi-MIR169y, vvi-MIR169c, vvi-MIR169d, vvi-MIR169e, vvi-MIR169f, vvi-MIR169g, vvi-MIR169j, vvi-MIR169k, vvi-MIR169m, vvi-MIR169p, vvi-MIR169r, vvi-MIR169s, vvi-MIR169t, vvi-MIR169u, vvi-MIR171a, vvi-MIR171b, vvi-MIR171c, vvi-MIR171d, vvi-MIR171e, vvi-MIR171f, vvi-MIR171h, vvi-MIR171i, vvi-MIR172a, vvi-MIR172b, vvi-MIR172c, vvi-MIR172d, vvi-MIR319b, vvi-MIR319c, vvi-MIR319f, vvi-MIR319g, vvi-MIR393b, vvi-MIR395a, vvi-MIR395b, vvi-MIR395c, vvi-MIR395e, vvi-MIR395f, vvi-MIR395g, vvi-MIR395h, vvi-MIR395i, vvi-MIR395j, vvi-MIR395k, vvi-MIR395l, vvi-MIR395m, vvi-MIR398a, vvi-MIR399a, vvi-MIR399b, vvi-MIR399e, vvi-MIR399g, vvi-MIR399h, vvi-MIR408, vvi-MIR156h, vvi-MIR169b, vvi-MIR169h, vvi-MIR169i, vvi-MIR169l, vvi-MIR169n, vvi-MIR169o, vvi-MIR169q, vvi-MIR169v, vvi-MIR169w, vvi-MIR169x, vvi-MIR171g, vvi-MIR319e, vvi-MIR393a, vvi-MIR395n, vvi-MIR397a, vvi-MIR398b, vvi-MIR398c, vvi-MIR399c, vvi-MIR399d, vvi-MIR399f, vvi-MIR399i, vvi-MIR3623, vvi-MIR3624, vvi-MIR3630, vvi-MIR3633a, vvi-MIR3634, vvi-MIR3633b, vvi-MIR3636, vvi-MIR3640, vvi-MIR171j
In this study, the expression of six conserved miRNAs, including miR156, miR171, miR172, miR395, miR397, and miR398, were downregulated after cold stress, and there was no conserved miRNAs showed significant upregulated.
[score:9]
For example, miR395 could be induced by sulfate starvation and targets the ATP sulfurylase genes (APS1, APS3, and APS4) to regulate sulfate metabolism (Jones-Rhoades and Bartel, 2004).
[score:4]
Nine miRNA families (miR164, miR166, miR167, miR168, miR169, miR395, miR3623, miR3633, and miR3636) were strongly expressed, with more than 10,000 reads detected in at least one of the two libraries.
[score:3]
The expression of Group II miRNAs (vvi-miR395, novel_mir_6, and novel_mir_44) increased at 2 h and decreased at 8 h after the plantlets were subjected to cold stress.
[score:3]
Other predicted target genes included proteins such as multicopper oxidase for vvi-miR397a, novel_mir_29, and novel_mir_44; sulfate transporter protein for vvi-miR395; E3 ubiquitin ligase for vvi-miR3634; WD-40 repeat protein for vvi-miR172d; and sugar transporter protein for vvi-miR3630.
[score:3]
The medium miRNA families were miR395, miR156, miR166, and miR399, with 13, 9, 8, and 8 members, respectively.
[score:1]
[1 to 20 of 6 sentences]
|
2 |
![]()
Other miRNAs from this paper: vvi-MIR156a, vvi-MIR156b, vvi-MIR156c, vvi-MIR156d, vvi-MIR156e, vvi-MIR156f, vvi-MIR156g, vvi-MIR156i, vvi-MIR159a, vvi-MIR159b, vvi-MIR159c, vvi-MIR164a, vvi-MIR164b, vvi-MIR164c, vvi-MIR164d, vvi-MIR166a, vvi-MIR166b, vvi-MIR166c, vvi-MIR166d, vvi-MIR166e, vvi-MIR166f, vvi-MIR166g, vvi-MIR166h, vvi-MIR169a, vvi-MIR169y, vvi-MIR169c, vvi-MIR169d, vvi-MIR169e, vvi-MIR169f, vvi-MIR169g, vvi-MIR169j, vvi-MIR169k, vvi-MIR169m, vvi-MIR169p, vvi-MIR169r, vvi-MIR169s, vvi-MIR169t, vvi-MIR169u, vvi-MIR171a, vvi-MIR171b, vvi-MIR171c, vvi-MIR171d, vvi-MIR171e, vvi-MIR171f, vvi-MIR171h, vvi-MIR171i, vvi-MIR172a, vvi-MIR172b, vvi-MIR172c, vvi-MIR172d, vvi-MIR319b, vvi-MIR319c, vvi-MIR319f, vvi-MIR319g, vvi-MIR390, vvi-MIR393b, vvi-MIR395a, vvi-MIR395b, vvi-MIR395c, vvi-MIR395e, vvi-MIR395f, vvi-MIR395g, vvi-MIR395h, vvi-MIR395i, vvi-MIR395j, vvi-MIR395k, vvi-MIR395l, vvi-MIR395m, vvi-MIR396a, vvi-MIR396b, vvi-MIR396d, vvi-MIR398a, vvi-MIR479, vvi-MIR156h, vvi-MIR169b, vvi-MIR169h, vvi-MIR169i, vvi-MIR169l, vvi-MIR169n, vvi-MIR169o, vvi-MIR169q, vvi-MIR169v, vvi-MIR169w, vvi-MIR169x, vvi-MIR171g, vvi-MIR319e, vvi-MIR393a, vvi-MIR395n, vvi-MIR396c, vvi-MIR482, vvi-MIR828a, vvi-MIR845a, vvi-MIR845b, vvi-MIR845c, vvi-MIR845d, vvi-MIR845e, vvi-MIR3626, vvi-MIR3630, vvi-MIR3631a, vvi-MIR3631b, vvi-MIR3631c, vvi-MIR3631d, vvi-MIR3634, vvi-MIR3636, vvi-MIR3638, vvi-MIR3639, vvi-MIR171j
Some miRNAs are specific to a few groups of samples, such as vvi-miR395-3p, which is strongly regulated during flower and berry development, or miRC477-3p mainly expressed in berries and rachis, and miR393 a,b-5p expressed in developing rachis and flowers.
[score:7]
Vvi-miR395, whose abundance decreases from pre- veraison to maturity, as already reported in [25], down-regulates a class 2-sulphate transporter and it has been usually involved in sulphur uptake and assimilation, or in nutrient starvation response [90– 92].
[score:4]
It is worth noting that while in open blooming flowers miR395 is below the set threshold of expression, its abundance is very strong in stamen (369.5 TP5M) and especially in carpel (658.5 TP5M), sampled from the same open flowers (Fig. 6A) This miRNA is also present in the berry at the fruit-set stage, peaking at pre-veraison (1571 TP5M), and decreasing from veraison through maturation, as already observed in our previous analyses [25] that suggests a role for this miRNA, regulating sulphate metabolism, at fruit setting and veraison.
[score:4]
miR395 family members are expressed in the young inflorescences (Infl_Y – 68.5 TP5M) and are then shut down in subsequent developmental stages.
[score:4]
In this respect, it is plausible that miR395, by regulating sulphate transporter, may be implicated in the activation of phenylpropanoid pathways.
[score:2]
Other conserved miRNAs, such as miR171 and miR395, show an interesting pattern of abundance in inflorescences (Fig. 8B), although their involvement in flower development is not clear.
[score:2]
[1 to 20 of 6 sentences]
|
3 |
![]()
Other miRNAs from this paper: vvi-MIR156a, vvi-MIR156b, vvi-MIR156c, vvi-MIR156d, vvi-MIR156e, vvi-MIR156f, vvi-MIR156g, vvi-MIR156i, vvi-MIR159a, vvi-MIR159b, vvi-MIR159c, vvi-MIR160a, vvi-MIR160b, vvi-MIR160c, vvi-MIR160d, vvi-MIR160e, vvi-MIR166a, vvi-MIR166b, vvi-MIR166c, vvi-MIR166d, vvi-MIR166e, vvi-MIR166f, vvi-MIR166g, vvi-MIR166h, vvi-MIR167a, vvi-MIR167b, vvi-MIR167c, vvi-MIR167d, vvi-MIR167e, vvi-MIR171a, vvi-MIR171b, vvi-MIR171c, vvi-MIR171d, vvi-MIR171e, vvi-MIR171f, vvi-MIR171h, vvi-MIR171i, vvi-MIR172a, vvi-MIR172b, vvi-MIR172c, vvi-MIR172d, vvi-MIR319b, vvi-MIR319c, vvi-MIR319f, vvi-MIR319g, vvi-MIR390, vvi-MIR393b, vvi-MIR395a, vvi-MIR395b, vvi-MIR395c, vvi-MIR395e, vvi-MIR395f, vvi-MIR395g, vvi-MIR395h, vvi-MIR395i, vvi-MIR395j, vvi-MIR395k, vvi-MIR395l, vvi-MIR395m, vvi-MIR399a, vvi-MIR399b, vvi-MIR399e, vvi-MIR399g, vvi-MIR399h, vvi-MIR479, vvi-MIR156h, vvi-MIR171g, vvi-MIR319e, vvi-MIR393a, vvi-MIR395n, vvi-MIR399c, vvi-MIR399d, vvi-MIR399f, vvi-MIR399i, vvi-MIR482, vvi-MIR2950, vvi-MIR3627, vvi-MIR3629a, vvi-MIR3629b, vvi-MIR3629c, vvi-MIR3638, vvi-MIR171j
In this study miR395 was up-regulated in the AY phytoplasma-infected leaves, and may contribute to favourable conditions for pathogen growth.
[score:4]
miR395 is known to target members of the ATP-sulphurylase (ATPS) gene family and a low-affinity sulphate transporter gene SULTR2;1, both crucial for regulating sulphate homeostasis in Arabidopsis [105] (S6 File).
[score:4]
A few of these, including vvi-miR395 and vvi-miR399, were differentially expressed in the present study, possibly in response to AY phytoplasma-infection.
[score:3]
The induction of miR395 levels leads to sulphate accumulation in the leaves due to increased translocation from the roots [106, 107].
[score:1]
[1 to 20 of 4 sentences]
|
4 |
![]()
Other miRNAs from this paper: vvi-MIR156d, vvi-MIR156f, vvi-MIR159a, vvi-MIR159c, vvi-MIR160a, vvi-MIR160b, vvi-MIR160c, vvi-MIR162, vvi-MIR164a, vvi-MIR164b, vvi-MIR166a, vvi-MIR166b, vvi-MIR166c, vvi-MIR166d, vvi-MIR166e, vvi-MIR166f, vvi-MIR166g, vvi-MIR166h, vvi-MIR167a, vvi-MIR167b, vvi-MIR167c, vvi-MIR167d, vvi-MIR167e, vvi-MIR168, vvi-MIR169a, vvi-MIR169y, vvi-MIR169c, vvi-MIR169d, vvi-MIR169e, vvi-MIR169f, vvi-MIR169g, vvi-MIR169j, vvi-MIR169k, vvi-MIR169m, vvi-MIR169p, vvi-MIR169r, vvi-MIR169s, vvi-MIR169t, vvi-MIR169u, vvi-MIR171a, vvi-MIR171c, vvi-MIR171e, vvi-MIR171f, vvi-MIR171h, vvi-MIR172a, vvi-MIR172b, vvi-MIR172c, vvi-MIR172d, vvi-MIR319b, vvi-MIR319c, vvi-MIR319f, vvi-MIR319g, vvi-MIR394b, vvi-MIR395a, vvi-MIR395b, vvi-MIR395c, vvi-MIR395e, vvi-MIR395f, vvi-MIR395g, vvi-MIR395h, vvi-MIR395i, vvi-MIR395j, vvi-MIR395k, vvi-MIR395l, vvi-MIR395m, vvi-MIR396a, vvi-MIR396b, vvi-MIR396d, vvi-MIR398a, vvi-MIR399a, vvi-MIR399b, vvi-MIR408, vvi-MIR479, vvi-MIR535a, vvi-MIR535b, vvi-MIR535c, vvi-MIR169b, vvi-MIR169h, vvi-MIR169i, vvi-MIR169l, vvi-MIR169n, vvi-MIR169o, vvi-MIR169q, vvi-MIR169v, vvi-MIR169w, vvi-MIR169x, vvi-MIR171g, vvi-MIR319e, vvi-MIR395n, vvi-MIR396c, vvi-MIR397a, vvi-MIR398b, vvi-MIR403a, vvi-MIR403b, vvi-MIR403c, vvi-MIR403d, vvi-MIR403e, vvi-MIR403f, vvi-MIR477a, vvi-MIR482, vvi-MIR828a, vvi-MIR845a, vvi-MIR845b, vvi-MIR845c, vvi-MIR845d, vvi-MIR845e, vvi-MIR477b
miR395 is known to contribute to the regulation of sulfur metabolism, targeting both sulfate transporters and ATP sulphurylase genes.
[score:4]
The sharp up-regulation of miR395 at veraison suggests a further role for miRNAs in an agronomically important aspect of grape maturation.
[score:4]
Mapping of the short tags onto the genome sequence revealed that of the 28 families predicted by our comparative analysis, 23 showed at least one sequence tag either in exact or very close correspondence to the position of one of the predicted mature sequences (the exceptions being miR395, miR396, miR477, miR828 and miR845).
[score:1]
[1 to 20 of 3 sentences]
|
5 |
![]()
Other miRNAs from this paper: vvi-MIR156a, vvi-MIR156b, vvi-MIR156c, vvi-MIR156d, vvi-MIR156e, vvi-MIR156f, vvi-MIR156g, vvi-MIR156i, vvi-MIR159a, vvi-MIR159c, vvi-MIR160a, vvi-MIR160b, vvi-MIR160c, vvi-MIR160d, vvi-MIR160e, vvi-MIR162, vvi-MIR164a, vvi-MIR164b, vvi-MIR164c, vvi-MIR164d, vvi-MIR166a, vvi-MIR166b, vvi-MIR166c, vvi-MIR166d, vvi-MIR166e, vvi-MIR166f, vvi-MIR166g, vvi-MIR166h, vvi-MIR167a, vvi-MIR167b, vvi-MIR167c, vvi-MIR167d, vvi-MIR167e, vvi-MIR168, vvi-MIR169a, vvi-MIR169y, vvi-MIR169c, vvi-MIR169d, vvi-MIR169e, vvi-MIR169f, vvi-MIR169g, vvi-MIR169j, vvi-MIR169k, vvi-MIR169m, vvi-MIR169p, vvi-MIR169r, vvi-MIR169s, vvi-MIR169t, vvi-MIR169u, vvi-MIR171a, vvi-MIR171b, vvi-MIR171c, vvi-MIR171d, vvi-MIR171e, vvi-MIR171f, vvi-MIR171h, vvi-MIR171i, vvi-MIR172a, vvi-MIR172b, vvi-MIR172c, vvi-MIR172d, vvi-MIR319b, vvi-MIR319c, vvi-MIR319f, vvi-MIR319g, vvi-MIR393b, vvi-MIR394a, vvi-MIR394b, vvi-MIR395a, vvi-MIR395b, vvi-MIR395c, vvi-MIR395e, vvi-MIR395f, vvi-MIR395g, vvi-MIR395h, vvi-MIR395i, vvi-MIR395j, vvi-MIR395k, vvi-MIR395l, vvi-MIR395m, vvi-MIR396a, vvi-MIR396b, vvi-MIR396d, vvi-MIR398a, vvi-MIR399a, vvi-MIR399b, vvi-MIR399e, vvi-MIR399g, vvi-MIR399h, vvi-MIR408, vvi-MIR479, vvi-MIR535a, vvi-MIR535b, vvi-MIR535c, vvi-MIR156h, vvi-MIR169b, vvi-MIR169h, vvi-MIR169i, vvi-MIR169l, vvi-MIR169n, vvi-MIR169o, vvi-MIR169q, vvi-MIR169v, vvi-MIR169w, vvi-MIR169x, vvi-MIR171g, vvi-MIR319e, vvi-MIR393a, vvi-MIR394c, vvi-MIR395n, vvi-MIR396c, vvi-MIR397a, vvi-MIR398b, vvi-MIR398c, vvi-MIR399c, vvi-MIR399d, vvi-MIR399f, vvi-MIR399i, vvi-MIR403a, vvi-MIR403b, vvi-MIR403c, vvi-MIR403d, vvi-MIR403e, vvi-MIR403f, vvi-MIR477a, vvi-MIR482, vvi-MIR828a, vvi-MIR845a, vvi-MIR845b, vvi-MIR845c, vvi-MIR845d, vvi-MIR845e, vvi-MIR477b, vvi-MIR171j
miR395 is known to contribute to the regulation of sulfur metabolism, targeting both sulfate transporters and ATP sulphurylase genes.
[score:4]
The sharp up-regulation of miR395 at veraison suggests a further role for miRNAs in an agronomically important aspect of grape maturation.
[score:4]
In some cases, the most commonly observed sequences were identical to at least one of the predicted mature sequences (notably: miR156, miR160, miR164, miR167, miR169, miR172, miR394, miR399) while for other families, the predominant mature miRNA sequenced exhibited small variations (shifts or differences of length of one or two bases) with respect to the predicted mature sequences (e. g. miR166, miR393, miR395, miR396, miR408).
[score:1]
[1 to 20 of 3 sentences]
|
6 |
![]()
Other miRNAs from this paper: vvi-MIR169a, vvi-MIR169y, vvi-MIR169c, vvi-MIR169d, vvi-MIR169e, vvi-MIR169f, vvi-MIR169g, vvi-MIR169j, vvi-MIR169k, vvi-MIR169m, vvi-MIR169p, vvi-MIR169r, vvi-MIR169s, vvi-MIR169t, vvi-MIR169u, vvi-MIR395a, vvi-MIR395b, vvi-MIR395c, vvi-MIR395e, vvi-MIR395f, vvi-MIR395g, vvi-MIR395h, vvi-MIR395i, vvi-MIR395j, vvi-MIR395k, vvi-MIR395l, vvi-MIR395m, vvi-MIR396a, vvi-MIR396b, vvi-MIR396d, vvi-MIR399a, vvi-MIR399b, vvi-MIR399e, vvi-MIR399g, vvi-MIR399h, vvi-MIR169b, vvi-MIR169h, vvi-MIR169i, vvi-MIR169l, vvi-MIR169n, vvi-MIR169o, vvi-MIR169q, vvi-MIR169v, vvi-MIR169w, vvi-MIR169x, vvi-MIR395n, vvi-MIR396c, vvi-MIR399c, vvi-MIR399d, vvi-MIR399f, vvi-MIR399i, vvi-MIR828a
miR169, miR395 and miR399 loci cluster frequently.
[score:1]
[1 to 20 of 1 sentences]
|