sort by

7 publications mentioning vvi-MIR171c

Open access articles that are associated with the species Vitis vinifera and mention the gene name MIR171c. Click the [+] symbols to view sentences that include the gene name, or the word cloud on the right for a summary.

1
[+] score: 22
Other miRNAs from this paper: vvi-MIR156a, vvi-MIR156b, vvi-MIR156c, vvi-MIR156d, vvi-MIR156e, vvi-MIR156f, vvi-MIR156g, vvi-MIR156i, vvi-MIR159a, vvi-MIR159c, vvi-MIR160a, vvi-MIR160b, vvi-MIR160c, vvi-MIR160d, vvi-MIR160e, vvi-MIR162, vvi-MIR164a, vvi-MIR164b, vvi-MIR164c, vvi-MIR164d, vvi-MIR166a, vvi-MIR166b, vvi-MIR166c, vvi-MIR166d, vvi-MIR166e, vvi-MIR166f, vvi-MIR166g, vvi-MIR166h, vvi-MIR167a, vvi-MIR167b, vvi-MIR167c, vvi-MIR167d, vvi-MIR167e, vvi-MIR168, vvi-MIR169a, vvi-MIR169y, vvi-MIR169c, vvi-MIR169d, vvi-MIR169e, vvi-MIR169f, vvi-MIR169g, vvi-MIR169j, vvi-MIR169k, vvi-MIR169m, vvi-MIR169p, vvi-MIR169r, vvi-MIR169s, vvi-MIR169t, vvi-MIR169u, vvi-MIR171a, vvi-MIR171b, vvi-MIR171d, vvi-MIR171e, vvi-MIR171f, vvi-MIR171h, vvi-MIR171i, vvi-MIR172a, vvi-MIR172b, vvi-MIR172c, vvi-MIR172d, vvi-MIR319b, vvi-MIR319c, vvi-MIR319f, vvi-MIR319g, vvi-MIR393b, vvi-MIR394a, vvi-MIR394b, vvi-MIR395a, vvi-MIR395b, vvi-MIR395c, vvi-MIR395d, vvi-MIR395e, vvi-MIR395f, vvi-MIR395g, vvi-MIR395h, vvi-MIR395i, vvi-MIR395j, vvi-MIR395k, vvi-MIR395l, vvi-MIR395m, vvi-MIR396a, vvi-MIR396b, vvi-MIR396d, vvi-MIR398a, vvi-MIR399a, vvi-MIR399b, vvi-MIR399e, vvi-MIR399g, vvi-MIR399h, vvi-MIR408, vvi-MIR479, vvi-MIR535a, vvi-MIR535b, vvi-MIR535c, vvi-MIR156h, vvi-MIR169b, vvi-MIR169h, vvi-MIR169i, vvi-MIR169l, vvi-MIR169n, vvi-MIR169o, vvi-MIR169q, vvi-MIR169v, vvi-MIR169w, vvi-MIR169x, vvi-MIR171g, vvi-MIR319e, vvi-MIR393a, vvi-MIR394c, vvi-MIR395n, vvi-MIR396c, vvi-MIR397a, vvi-MIR398b, vvi-MIR398c, vvi-MIR399c, vvi-MIR399d, vvi-MIR399f, vvi-MIR399i, vvi-MIR403a, vvi-MIR403b, vvi-MIR403c, vvi-MIR403d, vvi-MIR403e, vvi-MIR403f, vvi-MIR477a, vvi-MIR482, vvi-MIR828a, vvi-MIR845a, vvi-MIR845b, vvi-MIR845c, vvi-MIR845d, vvi-MIR845e, vvi-MIR477b, vvi-MIR171j
miR395a and miR171 h show a distinctive pattern of expression - being highly expressed at veraison with respect to the other two stages (4.4 and 2.3 fold changes of expression level respectively) (Figure 3A). [score:7]
Four miRNAs (miR171c, miR172c, miR396c, miR403a) are, on the contrary, more expressed in green berries, their expression decreasing during ripening (Figure 3C). [score:5]
On the contrary miR164a, miR164b, miR171c and miR172c show a significantly lower level of expression in roots (Figure 3F). [score:3]
Five miRNAs (miR169v, miR169y, miR171f, miR171 h and miR319b) yield significantly higher signals in young inflorescences than both leaves and roots (between 2 and 7.2 fold higher levels in this tissue)(Figure 3E). [score:1]
For three families (miR171, miR397, mir398) the predominant species sequenced showed greater shifts with respect to the prediction. [score:1]
A: Vvi-miR171c, B: Vvi-miR397a/b, C: Vvi-miR398a/b and c. We recovered a number of reads that include an additional 3' base that does not correspond to any genomic locus, this tendency has been observed in other species (e. g. [28]). [score:1]
A similar situation is observed for miR171 g which falls on the opposite strand to to a GRAS domain transcription factor gene. [score:1]
A: Vvi-miR171c, B: Vvi-miR397a/b, C: Vvi-miR398a/b and c. We recovered a number of reads that include an additional 3' base that does not correspond to any genomic locus, this tendency has been observed in other species (e. g. [28]). [score:1]
For example miR171e transcripts are detected only in callus, miR171f is only transcribed in stem while miR171 g is observed in callus and root - a similar situation can be observed for several families including miR166, miR167 and miR169). [score:1]
While in the case of miR171 and miR397, shifts of up to three bases within or between organisms are registered in miRBase (Figure 1A, B), the grapevine miR398 family presented several mature sequences that varied by up to 8 bases with respect to one another (Figure 1C). [score:1]
[1 to 20 of 10 sentences]
2
[+] score: 13
In this study, the expression of six conserved miRNAs, including miR156, miR171, miR172, miR395, miR397, and miR398, were downregulated after cold stress, and there was no conserved miRNAs showed significant upregulated. [score:9]
Group I included 10 miRNAs (vvi-miR156c, vvi-miR171, vvi-miR172d, vvi-miR397a, vvi-miR398, vvi-miR3624, vvi-miR3633b [*], vvi-miR3634, novel_mir_4, and novel_mir_42), and their expression decreased rapidly and reached the minimum level at 4 or 8 h, then increased gradually. [score:3]
The targets of conserved miRNAs, such as miR156, miR171, and miR172, had been investigated in several grapevine cultivars, and their functions were almost in accordance with the previous studies (Carra et al., 2009; Mica et al., 2010; Pantaleo et al., 2010; Wang et al., 2011a, 2012). [score:1]
[1 to 20 of 3 sentences]
3
[+] score: 12
Putative targets of conserved miRNA families, such as miR156, miR159, miR171 and miR399, identified in this study, correspond to targets found in numerous plant species, including several grapevine cultivars, while the predicted functions of these targets were also similar with previous findings [26, 27, 58, 60, 68– 70] (S6 File). [score:7]
The differential expression of conserved miRNA families (vvi-miR156, miR159, vvi-miR160, vvi-miR171, vvi-miR172, vvi-miR319), known to be involved in different aspects of plant development [18], make these potential candidates that play a role in the interactions leading to symptoms associated with GY. [score:4]
Vvi-miRn025a and vvi-miRn025b, for example, share high homology with vvi-miR171 (S4 File). [score:1]
[1 to 20 of 3 sentences]
4
[+] score: 8
Four miRNAs (miR171c, miR172c, miR396c, miR403a) are, on the contrary, more expressed in green berries, their expression decreasing during ripening (Figure 2C). [score:5]
On the contrary miR164a, miR164b, miR171c and miR172c show a significantly lower level of expression in roots (Figure 2F). [score:3]
[1 to 20 of 2 sentences]
5
[+] score: 8
Our data show that miR171h decreases during inflorescence development, as already shown in Prunus [51]: in both Prunus and Vitis miR171 targets a GRAS family transcription factor, and from our data vvi-miR171b is negatively correlated to its predicted target VIT_202s0154g00400 (Additional file 10). [score:6]
Other conserved miRNAs, such as miR171 and miR395, show an interesting pattern of abundance in inflorescences (Fig.   8B), although their involvement in flower development is not clear. [score:2]
[1 to 20 of 2 sentences]
6
[+] score: 3
Other miRNAs from this paper: sly-MIR171c
MicroRNA171c -targeted SCL6-II, SCL6-III, and SCL6-IV genes regulate shoot branching in Arabidopsis. [score:3]
[1 to 20 of 1 sentences]
7
[+] score: 2
Lanes 1-7, 1'-7' are 3'RACE (up) and 5'RACE (down) products of va-miR156a-SNP, va-miR166a-SNP, va-miR166h-SNP, va-miR169b-SNP, va-miR169l-SNP, va-miR169o-SNP and va-miR171c/d-SNP, respectively. [score:1]
Lanes 1'-20' are 3'RACE (C) and 5'RACE (D) products of 20 higher abundance va-miRNAs (va-miR156e, va-miR160c, va-miR162, va-miR164c, va-miR166c, va-miR169m, va-miR171c, va-miR172c, va-miR408, va-miR535a, va-miR001, va-miR007, va-miR016, va-miR018, va-miR023, va-miR046, va-miR047, va-miR049, va-miR057 and va-miR062, respectively). [score:1]
[1 to 20 of 2 sentences]