sort by

31 publications mentioning zma-MIR169i

Open access articles that are associated with the species Zea mays and mention the gene name MIR169i. Click the [+] symbols to view sentences that include the gene name, or the word cloud on the right for a summary.

1
[+] score: 230
The expression of most ZmNF-YA transcripts targeted by zma-miR169 showed an inverse pattern with increased expression in the short term followed by decreased expression over time. [score:9]
Pre-zma-miR169 overexpression vectors (except for zma-miR169d/e) and overexpression vectors for seven potential targets with 3′UTR target sites were pooled and co -transfected into maize protoplasts. [score:9]
In contrast, zma-miR169 expression remained downregulated after 15 days under salt stress, except for slight upregulation of zma-miR169l and zma-miR169o (Figure 7C). [score:9]
All zma-miR169 genes were dramatically downregulated during 0∼48 h with corresponding upregulation of ZmNF-YA1, 4, 6, 7, 11, and 14 expressions. [score:9]
The expression patterns of the ZmNF-YA mRNAs targeted by zma-miR169 were inversely related to the levels of zma-miR169 expression, suggesting that ZmNF-YA expression in roots in response to abiotic stress is controlled predominantly by zma-miR169s (Figure 6). [score:9]
ZmNF-YA11 expression was upregulated in both the short term and long term, indicating that ZmNF-YA11 expression was regulated by ABA in addition to zma-miR169. [score:9]
Taken together, the results show that zma-miR169 gene family expression was rapidly and dramatically repressed in maize roots in response to abiotic stress, and the repression was gradually released over time, then that expression was upregulated in the long term. [score:8]
Expression of all zma-miR169 genes increased dramatically in response to long-term treatment with corresponding downregulation of ZmNF-YA1, 4, 7, 13, and 14 expressions. [score:8]
Expression of ZmNF-YA1, 4, and 7 was clearly upregulated within 12 h, indicating that ZmNF-YA1, 4, and 7 were regulated mainly by miR169 at the early stage (Figure 6C). [score:7]
All zma-miR169 gene family members were dramatically downregulated in roots by ABA treatment during 0∼48 h and then upregulated in the 15 day. [score:7]
ZmNF-YA13 expression was downregulated in the short term, indicating that ZmNF-YA13 was regulated mainly by salt over miR169. [score:7]
These results indicated that the expression of the zma-miR169 gene family members and their target genes was dynamically regulated at different time points during stress and that the regulation changed under continuous stress, suggesting the action of an adaptive process in stressed plants. [score:7]
Under NaCl treatment, zma-miR169 genes were slightly downregulated, with the exception of zma-miR169l and zma-miR169o, which showed a slight increase in expression. [score:6]
Expression of zma-miR169 genes was significantly upregulated by long-term drought and exogenous ABA treatment. [score:6]
The expression levels of all zma-miR169 family members were upregulated 3∼17-fold and 17∼70-fold after 15 days of ABA and PEG treatment, respectively (Figure 7C). [score:6]
We defined the expression profiles of mature zma-miR169 family members and their target ZmNF-YA genes in maize roots in response to three abiotic stress conditions. [score:5]
Expression of some NFYA genes remained under regulation by zma-miR169/ZmNF-YA, while others were released from zma-miR169 regulation. [score:5]
In this study, we showed that three abiotic stress conditions caused changes in the expression levels of zma-miR169 and their target genes in maize. [score:5]
To explore the regulatory mechanism of the zma-miR169/ZmNF-YA module in maize roots under abiotic stress, the global responses of mature zma-miR169 members and their targeted ZmNF-YA genes to long-term abiotic stress conditions were examined in this study. [score:4]
All of zma-miR169 gene family members were dramatically downregulated by salt stress in the short term. [score:4]
ZmNF-YA11 appeared to escape regulation by zma-miR169 over the long term, which may be the result due to expression of ZmNF-YA11 and miR169s in different tissues or cells (Figure 6A). [score:4]
Previous reports have shown that miR169 is upregulated by drought [10], [28], low temperature [9], [11], high soil salinity [14], [29], and UV-B radiation [26]. [score:4]
ZmNF-YA14 expression exhibited a perfect linear relationship with root elongation, indicating that miR169/ZmNF-YA modules are likely to be involved in this regulation. [score:4]
0091369.g007 Figure 7Maize root growth and zma-miR169/ZmNF-YA14 module expression in response to treatment with NaCl, ABA, or PEG. [score:3]
Computational prediction and experimental analyses suggest that miR169 targets members of the NF-YA gene family [12]– [14]. [score:3]
Short-term (0∼48 h) and long-term (15 days) zma-miR169 and ZmNF-YA expression profiles in maize roots were determined. [score:3]
Maize root growth and zma-miR169/ZmNF-YA14 module expression in response to treatment with NaCl, ABA, or PEG. [score:3]
Expression patterns of miR169 in different species in response to abiotic stress. [score:3]
Exactly equivalent conserved motifs were present in miR169 target sites located in 3′ UTR region of ZmNF-YA (Figure 1B, addressed in following section). [score:3]
Seven zma-miR169 target genes were cloned into the pAS2 vector using a recombination reaction for transformation into Saccharomyces cerevisiae (AH109) by electroporation (Genepulser; Bio-Rad, Hercules, CA, USA). [score:3]
Nuclear acid sequence alignments of mature zma-miR169 (A) and zma-miR169 target sites in ZmNF-YA family members (B). [score:3]
Prediction of mature miR169 family member targets was performed online with the PsRNA server using relatively strict rules (http://plantgrn. [score:3]
The pCAMBIA3301 vector (Cambia, LOCATION), which carries a ubiquitin promoter, was used to obtain efficient overexpression of pre-zma-miR169 and ZmNF-YA in maize. [score:3]
Most studies have analyzed miR169 expression profiles in response to stress in whole plants. [score:3]
The few studies that have separately analyzed miR169 expression in different tissues such as roots and shoots have shown that miR169s respond differently in different tissues during stress. [score:3]
Putative function of the zma-miR169/ZmNF-YA14 module in long-term abiotic stress responses and root elongationLong-term stress treatments allowed us to examine the stable responses of gene expression level for the stress-adapted plants. [score:3]
Potential targets of the zma-miR169 family in maize. [score:3]
These results indicated that zma-miR169 expression was repressed at an early stage but recovered to normal levels over the long term. [score:3]
Expression patterns of miR169 in different species in response to abiotic stressSophisticated mechanisms have evolved in plants to cope with a variety of environmental stress conditions. [score:3]
To explore the regulatory mechanism of zma-miR169/ZmNF-YA modules in roots under abiotic stress, maize plantlets were subjected to drought and salt stress and treated with ABA. [score:2]
ZmNF-YA6 may be regulated by both zma-miR169 and stress conditions. [score:2]
To date, no NF-YA genes or miR169/NF-YA modules in maize have been found to regulate responses to stress caused by drought, salt, or ABA. [score:2]
Cleavage of NF-YA mRNAs is directed by miR169 in Arabidopsis thaliana, Oryza sativa, and Glycine max [12]– [14]. [score:2]
We conclude that the zma-miR169/ZmNF-YA6 module might play a role in rapid responses in roots to various environmental stress conditions. [score:1]
Figure S1 Pre-miR169 sequence aligment in maize. [score:1]
Table S1 miR169 is a very conserved miRNA. [score:1]
How the zma-miR169 family members respond to drought or salt stress or exogenous abscisic acid (ABA) treatment has not been reported. [score:1]
Putative function of the zma-miR169/ZmNF-YA14 module in long-term abiotic stress responses and root elongation. [score:1]
Our results show that plants can respond differentially to drought or salt stress probably via the miR169/NF-YA module in roots for adaptation (Figure 8). [score:1]
org/) and published data, the miR169 family is large and conserved, and found in 35 plant species, including monocots and dicots as well as some ancient gymnosperms (Table S1). [score:1]
All zma-miR169 family members were rapidly and dramatically repressed in maize roots when exposed in abiotic stress. [score:1]
Putative mo del of zma-miR169/ZmNF-YA14 module response to stress in maize root. [score:1]
We found that 18 miR169 family members were located on eight chromosomes in maize (Table S2) and produced 10 mature products with high similarity (Figure 1). [score:1]
Three conserved motifs exist: “AGCCA”, “ATG” and “TTGCC” in the mature zma-miR169 sequences except in zma-miR169d and zma-miR169e. [score:1]
We obtained NFYA family and miR169 family sequence data separately from the Plant Transcription Factor Database v2.0 (Center for Bioinformatics, Peking University, China, http://planttfdb_v3. [score:1]
Additionally, the subcellular localization and transcriptional activation activities of zma-miR169 targeted ZmNF-YAs were investigated. [score:1]
Pre-miR169 family members and NFYAs with 3′UTRs were cloned into T-vector (Transgene pEASY-Blunt Cloning Vector; Beijing TransGen Biotech, Beijing, China) for sequencing. [score:1]
These results showed that miR169 family members are involved in plant responses to abiotic stress. [score:1]
In particular, miR169 is a general abiotic stress-responsive miRNA [10], [14], [18], [25], [26]. [score:1]
The miR169 family is the largest and most conserved miRNA family in plants. [score:1]
Outside of the mature miRNA regions, zma-miR169 family precursors differed wi dely in size and consensus sequences (Figure S1). [score:1]
The miR169 family is the largest and most conserved miRNA family in plants and has been shown to be involved in plant responses to abiotic stress [3], [9]– [11]. [score:1]
These results suggest that the zma-miR169/ZmNF-YA14 module might be involved in root growth in response to abiotic stress. [score:1]
Eighteen miR169 family members are present in maize (zma-miR169). [score:1]
These results revealed that zma-miR169/ZmNF-YA modules may provide a short-term rapid response to various stress conditions in roots. [score:1]
org) contains 18 maize miR169 family members. [score:1]
[1 to 20 of 66 sentences]
2
[+] score: 88
Five miRNAs (miR169, miR172, miR397, miR398, and miR827) were identified as being differentially expressed in leaves in response to the transient low N condition, with miR172 up-regulated but miR397, miR398, and miR827 down-regulated (Table S1). [score:9]
The expression level of the predicted target, GRMZM2G091964, showed the expected inverse pattern of expression that would be predicted if it is indeed regulated by miR169 (Fig. 3). [score:8]
The time course results indicate that although miR169i and miR169p (Fig. 2, Fig. 3) were up-regulated at early time points, they were down-regulated after experiencing a longer time of N reduction, suggesting the existence of a possible feedback regulatory mechanism. [score:8]
For example miR169(i,j,k), miR395(a,b,c,d,e,f,g,h,i) and miR169p were up-regulated in the transient condition, but down-regulated during chronic nitrogen stress. [score:7]
The first includes miR160, miR164, miR167, miR169, miR172, and miR319, which target transcription factors involved in further regulation of gene expression and signal transduction. [score:6]
In roots, the expression of miR169f, miR169i and miR169p were up-regulated until 12 hrs, and then returned to the basal level. [score:6]
Six miRNAs (miR160, miR168, miR169, miR319, miR395, and miR399) were identified to be differentially expressed in roots in response to the transient low N condition and all of them were up-regulated (Table S2). [score:6]
miR169e,f,g,h were down-regulated under both chronic and transient N-limiting conditions, while miR169i,j. [score:4]
For miR169i and miR169p, the mature miRNAs were up-regulated rapidly after transfer to the low N condition, and then later in the time-course their levels decreased below the level seen prior to N deprivation. [score:4]
For example, miR398(b,c), miR172(a,b,c,d) and miR397(a,b) had the same response under chronic and transient treatments in leaves, while miR408 and miR169(f,g,h) were down-regulated in both treatments and both tissues. [score:4]
Interestingly, different species in the miR169 family showed different patterns, as miR169e,f,g,h were down-regulated, but miR169i,j. [score:4]
Six miRNAs (miR167, miR169, miR395, miR399, miR408, and miR528) were found in roots in response to the chronic low nitrate condition, all of which were down-regulated (Table S2). [score:4]
With regards to tissue specificity(or tissue dependent), some miRNAs were only regulated in roots or leaves, such as miR160, miR167, miR168, miR319 and miR395 in roots, and miR164, miR172, miR397, miR398 and miR827 in leaves, while some others were regulated in both tissues, such as miR169, miR399, miR408 and miR528 (Fig. 4). [score:3]
Only miR169 (169p; 169i,j,k) was found to be expressed in both leaves and roots during this transient response (Fig. 1). [score:3]
Our experiments showed that the expression of miR169 species had been repressed under low nitrogen and was consistent with the response of the pri-miR169 under low nitrogen treatment in Arabidopsis [17]. [score:3]
Nine miRNA faimlies (miR164, miR169, miR172, miR397, miR398, miR399, miR408, miR528, and miR827) were identified to be differentially expressed in leaves in response to chronic low N condition. [score:3]
miR169i,j,k,p had an opposite pattern in both leaves (Table S1, Fig. 1) and roots (Table S2, Fig. 1). [score:1]
Among these miRNAs, miR169 (169p; 169f,g,h; 169i,j,k), miR399 (399d,j), miR408, and miR528 (528a,b) were found to be N-responsive in both leaves and roots (Fig. 1). [score:1]
The five miRNAs (miR169, miR172, miR397, miR398, and miR827) identified in leaves in response to transient low N condition were among the nine miRNAs identified under chronic N-limiting condition (Table S1, Fig. 1). [score:1]
Nine miRNA families (miR164, miR169, miR172, miR397, miR398, miR399, miR408, miR528, and miR827) were identified in leaves, and nine miRNA families (miR160, miR167, miR168, miR169, miR319, miR395, miR399, miR408, and miR528) identified in roots. [score:1]
miR169 responded to both chronic and transient N limitation but in an opposite fashion (Table S2, Fig. 1). [score:1]
Within the miR169 family, different species showed different response patterns. [score:1]
[1 to 20 of 22 sentences]
3
[+] score: 85
Other miRNAs from this paper: zma-MIR156d, zma-MIR156f, zma-MIR156g, zma-MIR156b, zma-MIR156c, zma-MIR156e, zma-MIR156a, zma-MIR156h, zma-MIR156i, zma-MIR160a, zma-MIR160c, zma-MIR160d, zma-MIR160b, zma-MIR164a, zma-MIR164d, zma-MIR164b, zma-MIR164c, zma-MIR169a, zma-MIR169b, zma-MIR167a, zma-MIR167b, zma-MIR167d, zma-MIR167c, zma-MIR160e, zma-MIR166a, zma-MIR166h, zma-MIR166e, zma-MIR166i, zma-MIR166f, zma-MIR166g, zma-MIR166b, zma-MIR166c, zma-MIR166d, zma-MIR171a, zma-MIR171b, zma-MIR172a, zma-MIR172d, zma-MIR172b, zma-MIR172c, zma-MIR171d, zma-MIR171f, zma-MIR395b, zma-MIR395c, zma-MIR395a, zma-MIR396b, zma-MIR396a, zma-MIR399a, zma-MIR399c, zma-MIR399b, zma-MIR399d, zma-MIR399e, zma-MIR399f, zma-MIR156j, zma-MIR159a, zma-MIR159b, zma-MIR159c, zma-MIR159d, zma-MIR319a, zma-MIR319c, zma-MIR319b, zma-MIR319d, zma-MIR166k, zma-MIR166j, zma-MIR167e, zma-MIR167f, zma-MIR167g, zma-MIR167h, zma-MIR167i, zma-MIR168a, zma-MIR168b, zma-MIR169c, zma-MIR169f, zma-MIR169g, zma-MIR169h, zma-MIR169k, zma-MIR169j, zma-MIR169d, zma-MIR169e, zma-MIR171c, zma-MIR171j, zma-MIR171e, zma-MIR171i, zma-MIR171g, zma-MIR172e, zma-MIR166l, zma-MIR166m, zma-MIR171k, zma-MIR171h, zma-MIR408a, zma-MIR156k, zma-MIR160f, zma-MIR396c, zma-MIR396d, zma-MIR156l, zma-MIR159e, zma-MIR159f, zma-MIR159g, zma-MIR159h, zma-MIR159i, zma-MIR159j, zma-MIR159k, zma-MIR160g, zma-MIR164e, zma-MIR164f, zma-MIR164g, zma-MIR164h, zma-MIR166n, zma-MIR167j, zma-MIR169l, zma-MIR169m, zma-MIR169n, zma-MIR169o, zma-MIR169p, zma-MIR169q, zma-MIR169r, zma-MIR171l, zma-MIR171m, zma-MIR171n, zma-MIR395d, zma-MIR395e, zma-MIR395f, zma-MIR395g, zma-MIR395h, zma-MIR395i, zma-MIR395j, zma-MIR395k, zma-MIR395l, zma-MIR395m, zma-MIR395n, zma-MIR395o, zma-MIR395p, zma-MIR396e, zma-MIR396f, zma-MIR396g, zma-MIR396h, zma-MIR399g, zma-MIR399h, zma-MIR399i, zma-MIR399j, zma-MIR408b, zma-MIR1432
Two miRNAs (miR169i-p5 and miR8155), two target genes (GRMZM2G069316 and GRMZM2G031169), and eight DEGs (up-regulated: GRMZM2G031790, GRMZM2G113191, GRMZM2G070620, and GRMZM2G029912; down-regulated: GRMZM2G120619, GRMZM2G057281, GRMZM2G155216, and GRMZM2G101664) with differential expression at 1.5 and 3 DAI were validated using qRT-PCR. [score:11]
Furthermore, the expression of two target genes GRMZM2G069316 (targeted by miR169i-p5) and GRMZM2G031169 (targeted by miR8155) changed more than 1.5-fold (|log [2]FC| > 0.58; P<0.05) (Supplementary Table S5). [score:9]
While the expression of miR169i-p5 decreased with a log [2]FC value of −1.2605, its major target genes, which were annotated as nucleolin (suppressor of Mek), a serine/threonine-protein kinase Rio1, a member of the 60S acidic ribosomal protein family, and ubiquitin-related enzymes, were negatively regulated. [score:8]
The miR166b-5p, miR167b, miR167d-5p-1, miR167d-5p-3, miR167e-3p, miR169i-p5, and miR399c-5p miRNAs were expressed at low levels, while miR166c-5p, miR167d-3p, miR169l-5p, and miR399a-3p were highly expressed (Supplementary Table S3). [score:5]
Luan M Xu M Lu Y Zhang L Fan Y Wang L 2015 Expression of zma-miR169 miRNAs and their target ZmNF-YA genes in response to abiotic stress in maize leaves. [score:5]
Expression of GRMZM2G069316, which is the target gene for miR169i-p5, increased both at 1.5 and 3 DAI with RBSDV. [score:5]
The NF-YA genes, which are targets of miR169, have been closely associated with stress -induced flowering, abiotic stress response in leaves or roots (Calvino and Messing, 2013; Borowski et al., 2014; Sorin et al., 2014; Luan et al., 2015) and with root nodule development (Reynoso et al., 2012). [score:4]
Three other miRNAs (miR156e, miR169i-p5, and miR396a-5p) were down-regulated (Fig. 2). [score:4]
Three negatively regulated genes (GRMZM2G087312, GRMZM2G094595, and GRMZM2G012690), which are targets of miR169i-p5, are ubiquitin-related genes, and include NADH: ubiquinone oxidoreductase, ubiquitin-conjugating enzyme, and the ubiquitin -associated (UBA)/TS-N domain-containing protein. [score:4]
A total of 30 negatively regulated genes, which are targeted by six miRNAs (miR169i-p5, miR169l-5p, miR319b-p3, miR319b-p3-1, miR319b-p3-Pt, and miR8155), were identified (Supplementary Table S5). [score:4]
GRMZM2G303964 is also related to the binding GO term (GO:0005488), which includes the negatively regulated gene GRMZM069316 that is a target of miR169i-p5. [score:4]
To confirm the miRNA and transcriptome sequencing results for the maize response to RBSDV, qRT-PCR was used to validate two miRNAs, miR169i-p5 and miR8155, and their two target genes, GRMZM2G069316 and GRMZM2G031169, respectively. [score:3]
The expression patterns of miRNAs from the miR166, miR167, miR169, and miR399 families were not completely uniform. [score:3]
A total of 99 transcripts from 48 genes were identified for 10 known miRNAs (miR156e, miR169i-p5, miR169l-5p, miR319b-p3, miR319b-p3-1, miR319b-p3-Pt, miR396a-5p, miR408a, miR4366-p3, and miR8155) that exhibited at least two-fold change in expression and that had at least 10 reads per dataset. [score:3]
Fig. 7. Networks of miR169i-p5 and miR8155 associated with GO terms of target genes. [score:3]
For miR169i-p5, 37 target genes were detected, including a 60S acidic ribosomal protein family, an abscisic stress-ripening protein, a serine/threonine-protein kinase Rio1, and a ubiquitin-related protein (Supplementary Table S5). [score:3]
As shown in Fig. 5b, the expression of miR169i-p5 decreased, but that of miR8155 increased. [score:3]
Combined analyses indicated that the regulation of the miRNA families miR166, miR167, miR169, miR396, and miR399 might be involved in maize tissues and stress responses. [score:2]
miR166, miR167, miR169, and miR396 also responded to RBSDV in rice leaves and roots (Sun et al., 2014). [score:1]
In the third group of miRNAs, members within five known miRNA families (miR166, miR167, miR169, miR396, and miR399) increased or decreased at the same time. [score:1]
[1 to 20 of 20 sentences]
4
[+] score: 67
Other miRNAs from this paper: zma-MIR156d, zma-MIR156f, zma-MIR156g, zma-MIR156b, zma-MIR156c, zma-MIR156e, zma-MIR156a, zma-MIR156h, zma-MIR156i, zma-MIR160a, zma-MIR160c, zma-MIR160d, zma-MIR160b, zma-MIR164a, zma-MIR164d, zma-MIR164b, zma-MIR164c, zma-MIR169a, zma-MIR169b, zma-MIR167a, zma-MIR167b, zma-MIR167d, zma-MIR167c, zma-MIR160e, zma-MIR166a, zma-MIR166h, zma-MIR166e, zma-MIR166i, zma-MIR166f, zma-MIR166g, zma-MIR166b, zma-MIR166c, zma-MIR166d, zma-MIR171a, zma-MIR171b, zma-MIR172a, zma-MIR172d, zma-MIR172b, zma-MIR172c, zma-MIR171d, zma-MIR171f, zma-MIR394a, zma-MIR394b, zma-MIR396b, zma-MIR396a, zma-MIR399a, zma-MIR399c, zma-MIR399b, zma-MIR399d, zma-MIR399e, zma-MIR399f, zma-MIR156j, zma-MIR159a, zma-MIR159b, zma-MIR159c, zma-MIR159d, zma-MIR319a, zma-MIR319c, zma-MIR319b, zma-MIR319d, zma-MIR166k, zma-MIR166j, zma-MIR167e, zma-MIR167f, zma-MIR167g, zma-MIR167h, zma-MIR167i, zma-MIR168a, zma-MIR168b, zma-MIR169c, zma-MIR169f, zma-MIR169g, zma-MIR169h, zma-MIR169k, zma-MIR169j, zma-MIR169d, zma-MIR169e, zma-MIR171c, zma-MIR171j, zma-MIR171e, zma-MIR171i, zma-MIR171g, zma-MIR172e, zma-MIR166l, zma-MIR166m, zma-MIR171k, zma-MIR171h, zma-MIR393a, zma-MIR408a, zma-MIR156k, zma-MIR160f, zma-MIR396c, zma-MIR396d, zma-MIR2118a, zma-MIR2118b, zma-MIR2118c, zma-MIR2118d, zma-MIR2118e, zma-MIR2118f, zma-MIR2118g, zma-MIR156l, zma-MIR159e, zma-MIR159f, zma-MIR159g, zma-MIR159h, zma-MIR159i, zma-MIR159j, zma-MIR159k, zma-MIR160g, zma-MIR164e, zma-MIR164f, zma-MIR164g, zma-MIR164h, zma-MIR166n, zma-MIR167j, zma-MIR169l, zma-MIR169m, zma-MIR169n, zma-MIR169o, zma-MIR169p, zma-MIR169q, zma-MIR169r, zma-MIR171l, zma-MIR171m, zma-MIR171n, zma-MIR390a, zma-MIR393b, zma-MIR393c, zma-MIR396e, zma-MIR396f, zma-MIR396g, zma-MIR396h, zma-MIR397a, zma-MIR397b, zma-MIR398a, zma-MIR398b, zma-MIR399g, zma-MIR399h, zma-MIR399i, zma-MIR399j, zma-MIR408b, zma-MIR528a, zma-MIR528b, zma-MIR827, zma-MIR390b, zma-MIR444a, zma-MIR444b
In our previous work, we found that zma-miR169 family members responded to the three abiotic stress conditions polyethylene glycol (PEG), abscisic acid (ABA) and NaCl, and most of the targeted ZmNF-YA genes exhibited a reverse correlation with zma-miR169 gene expression [53]. [score:5]
Our previous work found that an miR169 family member plays a key role in stress -induced flowering and leaf development in Arabidopsis via regulating its targets genes, NF-YA2 (AT3G05690) and NF-YA10 (AT5G06510) [51, 52]. [score:5]
Nuclear factor Y subunit A (NF-YAs), targets of miR169, acted as a negative regulator in rice immunity against the blast fungus Magnaporthe oryzae in rice [70]. [score:4]
Through histochemical staining analysis, zma-miR169b, zma-miR169c and zma-miR169i showed varying expression levels in the pedicel, placenta, basal endosperm transfer layer (BETL), embryo and endosperm in their own transgenic kernels (Figure 7a–c), suggesting their important roles in nutrients transport and kernel development. [score:4]
Studies on the miR169 family members revealed that they were highly expressed in the developing kernel, helping to exploit new players functioning in maize kernel development. [score:4]
Zma-miR169i was expressed in the whole kernel but peaked at 14 DAP and decreased slowly with kernel development (Figure 7c). [score:4]
Remarkably, we found that miR169 might be a kernel-specific miRNA, involved in the regulation development of the embryo or endosperm. [score:3]
Dynamic expression profiles of all the above three miR169 were consistent with the sequencing results (Table S2). [score:3]
Moreover, recent studies have proved that miR169 family members were involved in complex regulatory networks by coordinating stress responses and various developmental processes instead of working independently. [score:3]
4.2. miR169 Family Members Specifically Were Expressed in Maize Kernel. [score:3]
In this work, we identified nine mature miR169 members that were expressed in at least one sample via high-throughput sequencing. [score:3]
The expression level of miR169, miR394 and miR408 in the embryo was the highest at 15 DAP (Figure 3d). [score:3]
Here, we found that nine mature miR169 family members were expressed in the embryo or endosperm of maize (Figure 2c). [score:3]
Six miRNA families zma-miR166, zma-miR156, zma-miR171, zma-miR167, zma-miR169 and zma-miR399 were predominantly expressed in maize kernel (Figure 2c, Table S2). [score:3]
To confirm the sequencing results and investigate the potential biological function of miR169s in maize kernel development, three miR169 family members, zma-miR169b (same mature miRNA sequence as zma-miR169a), zma-miR169c (same as zma-miR169r) and zma-miR169i (same as zma-miR169j and k), were chosen for generating PromiR169::GUS transgenic maize plants and detecting their dynamic expression profiles during kernel development. [score:3]
Li Y. Zhao S. L. Li J. L. Hu X. H. Wang H. Cao X. L. Xu Y. J. Zhao Z. X. Xiao Z. Y. Yang N. Osa-miR169 negatively regulates rice immunity against the blast fungus Magnaporthe OryzaeFront. [score:2]
We also demonstrated that miR169 affected kernel development through a promoter: the GUS system in transgenic maize plants (Figure 7), although the detailed mechanism and phenotype changes need further elucidation. [score:2]
Zma-miR169 Family Involved in Kernel Development of Maize. [score:2]
For PromiR169: GUS (β-glucuronidase) constructs, 2000-bp upstream regions of the precursors of zma-miR169b, zma-miR169c and zma-miR169i amplified from genomic DNA (all primer sequences used for cloning are listed in Table S1), were cloned into pEASY-T1 vector (TransGen Biotech, Beijing, China) and then were recombined into the binary vector pCAMBIA3301 using ClonExpress [®] II One Step Cloning kit (Vazyme Biotech Co. [score:2]
As the most conserved and largest miRNA family in maize, miR169 has 18 members and can be divided into the following 10 subgroups based on mature miRNA sequences: miR169a/b, miR169c/r, miR169f/g/h, miR169i/j/k, miR169d, miR169e, miR169l, miR169o, miR169p and miR169q/n/m. [score:1]
Among them, miR166 was the most abundant family (17,602) followed by miR171 (11,988), miR827 (7686), miR167, miR396, miR528, miR156, miR408, miR160, miR390, miR159, miR444, miR319, miR398, miR168, miR394, miR164, miR393 and miR169 (Figure 3a). [score:1]
Xu M. Y. Zhang L. Li W. W. Hu X. L. Wang M. B. Fan Y. L. Zhang C. Y. Wang L. Stress -induced early flowering is mediated by miR169 in Arabidopsis thalianaJ. [score:1]
The miR169 family members were screened and identified to be involved in abiotic stress response in maize [53, 54]. [score:1]
MiR169 was defined as stress-responsive miRNA because its family members are largely involved in plant responses to abiotic stress [61, 62, 63, 64, 65, 66, 67, 68, 69]. [score:1]
The miR169 miRNA family is the largest family and highly conserved in plants. [score:1]
[1 to 20 of 25 sentences]
5
[+] score: 53
Other miRNAs from this paper: zma-MIR160a, zma-MIR160c, zma-MIR160d, zma-MIR160b, zma-MIR164a, zma-MIR164d, zma-MIR164b, zma-MIR164c, zma-MIR169a, zma-MIR169b, zma-MIR160e, zma-MIR172a, zma-MIR172d, zma-MIR172b, zma-MIR172c, sbi-MIR172b, sbi-MIR172c, sbi-MIR172a, sbi-MIR160d, sbi-MIR160a, sbi-MIR160c, sbi-MIR160b, sbi-MIR160e, sbi-MIR164a, sbi-MIR169b, sbi-MIR169a, sbi-MIR395b, sbi-MIR395a, sbi-MIR395d, sbi-MIR395e, sbi-MIR164b, sbi-MIR169c, sbi-MIR169d, sbi-MIR169f, sbi-MIR169g, sbi-MIR169i, sbi-MIR172e, sbi-MIR319a, zma-MIR395b, zma-MIR395c, zma-MIR395a, zma-MIR319a, zma-MIR319c, zma-MIR319b, zma-MIR319d, zma-MIR169c, zma-MIR169f, zma-MIR169g, zma-MIR169h, zma-MIR169k, zma-MIR169j, zma-MIR169d, zma-MIR169e, zma-MIR172e, zma-MIR160f, sbi-MIR164c, sbi-MIR395f, sbi-MIR160f, sbi-MIR164d, sbi-MIR164e, sbi-MIR169e, sbi-MIR169h, sbi-MIR169j, sbi-MIR169k, sbi-MIR169l, sbi-MIR169m, sbi-MIR169n, sbi-MIR172d, sbi-MIR319b, sbi-MIR395c, sbi-MIR395g, sbi-MIR395h, sbi-MIR395i, sbi-MIR395j, sbi-MIR395k, sbi-MIR395l, sbi-MIR437g, zma-MIR160g, zma-MIR164e, zma-MIR164f, zma-MIR164g, zma-MIR164h, zma-MIR169l, zma-MIR169m, zma-MIR169n, zma-MIR169o, zma-MIR169p, zma-MIR169q, zma-MIR169r, zma-MIR395d, zma-MIR395e, zma-MIR395f, zma-MIR395g, zma-MIR395h, zma-MIR395i, zma-MIR395j, zma-MIR395k, zma-MIR395l, zma-MIR395m, zma-MIR395n, zma-MIR395o, zma-MIR395p, sbi-MIR169o, sbi-MIR169p, sbi-MIR169q, sbi-MIR172f, sbi-MIR5381, sbi-MIR5382, sbi-MIR5383, sbi-MIR5384, sbi-MIR5385, sbi-MIR5386, sbi-MIR5387a, sbi-MIR5388, sbi-MIR5389, sbi-MIR5387b
We found that variation in miR172 and miR395 expression correlated with flowering time whereas variation in miR169 expression correlated with sugar content in stems. [score:5]
Thus, the expression of miR169 and miR395 target genes, and their correlation with Brix and flowering phenotypes remains to be elucidated. [score:5]
The FRL2 and RR3 genes are novel targets of miR172Although our data might suggest a possible function of miR169 in sugar content and miR395 in flowering time, we could not detect any predicted target related to carbohydrate metabolism and flowering time respectively (Additional file 3, Table S3 and Additional file 4, Figure S1). [score:5]
Considering a cutoff level of two-fold change in miRNA expression, we found that miR169 and miR172 were expressed higher in BTx623 relative to Rio, and higher in LB/EF F2s compared to HB/LF F2s. [score:4]
Table S3 provides a list of predicted target genes of miR169, miR172, and miR395. [score:3]
This suggested that high expression levels of miR169 might lead to a reduction in stem sugar content regardless of flowering time. [score:3]
Click here for file Predicted targets of miR169, miR172, and miR395. [score:3]
Regarding sugar content in the stem, high expression of miR169 in BTx623 correlated with low Brix in the F2 plants selected. [score:3]
Although our data might suggest a possible function of miR169 in sugar content and miR395 in flowering time, we could not detect any predicted target related to carbohydrate metabolism and flowering time respectively (Additional file 3, Table S3 and Additional file 4, Figure S1). [score:3]
The expression of miR169 and miR172 was at least twice as high in BTx623 relative to that in Rio and this difference was inherited in the F2. [score:3]
Click here for file Targets of predicted for miR169, miR172 and miR395 microRNAs. [score:3]
Figure S1 displays an alignment between miR169, miR172 and miR395 microRNAs and their target sequences. [score:3]
Predicted targets of miR169, miR172, and miR395. [score:3]
Although the expression difference of miR160, miR164 and miR319 between BTx623 and Rio was inherited in the F2, and thus of interest for further analysis, it was less than two fold; so we decided to focus on miR169, miR172 and miR395 instead. [score:3]
Targets of predicted for miR169, miR172 and miR395 microRNAs. [score:3]
Although miR169 and miR395 have known roles in drought stress and sulphur starvation, respectively [37, 38], our data suggested a possible function for these miRNAs in sugar accumulation and flowering time. [score:1]
[1 to 20 of 16 sentences]
6
[+] score: 37
Other miRNAs from this paper: zma-MIR156d, zma-MIR156f, zma-MIR156g, zma-MIR156b, zma-MIR156c, zma-MIR156e, zma-MIR156a, zma-MIR156h, zma-MIR156i, zma-MIR160a, zma-MIR160c, zma-MIR160d, zma-MIR160b, zma-MIR164a, zma-MIR164d, zma-MIR164b, zma-MIR164c, zma-MIR169a, zma-MIR169b, zma-MIR167a, zma-MIR167b, zma-MIR167d, zma-MIR167c, zma-MIR160e, zma-MIR166a, zma-MIR162, zma-MIR166h, zma-MIR166e, zma-MIR166i, zma-MIR166f, zma-MIR166g, zma-MIR166b, zma-MIR166c, zma-MIR166d, zma-MIR172a, zma-MIR172d, zma-MIR172b, zma-MIR172c, zma-MIR394a, zma-MIR394b, zma-MIR395b, zma-MIR395c, zma-MIR395a, zma-MIR399a, zma-MIR399c, zma-MIR399b, zma-MIR399d, zma-MIR399e, zma-MIR399f, zma-MIR156j, zma-MIR159a, zma-MIR159b, zma-MIR159c, zma-MIR159d, zma-MIR319a, zma-MIR319c, zma-MIR319b, zma-MIR319d, zma-MIR166k, zma-MIR166j, zma-MIR167e, zma-MIR167f, zma-MIR167g, zma-MIR167h, zma-MIR167i, zma-MIR168a, zma-MIR168b, zma-MIR169c, zma-MIR169f, zma-MIR169g, zma-MIR169h, zma-MIR169k, zma-MIR169j, zma-MIR169d, zma-MIR169e, zma-MIR172e, zma-MIR166l, zma-MIR166m, zma-MIR393a, zma-MIR408a, zma-MIR156k, zma-MIR160f, zma-MIR2118a, zma-MIR2118b, zma-MIR2118c, zma-MIR2118d, zma-MIR2118e, zma-MIR2118f, zma-MIR2118g, zma-MIR2275a, zma-MIR2275b, zma-MIR2275c, zma-MIR2275d, zma-MIR156l, zma-MIR159e, zma-MIR159f, zma-MIR159g, zma-MIR159h, zma-MIR159i, zma-MIR159j, zma-MIR159k, zma-MIR160g, zma-MIR164e, zma-MIR164f, zma-MIR164g, zma-MIR164h, zma-MIR166n, zma-MIR167j, zma-MIR169l, zma-MIR169m, zma-MIR169n, zma-MIR169o, zma-MIR169p, zma-MIR169q, zma-MIR169r, zma-MIR393b, zma-MIR393c, zma-MIR395d, zma-MIR395e, zma-MIR395f, zma-MIR395g, zma-MIR395h, zma-MIR395i, zma-MIR395j, zma-MIR395k, zma-MIR395l, zma-MIR395m, zma-MIR395n, zma-MIR395o, zma-MIR395p, zma-MIR397a, zma-MIR397b, zma-MIR398a, zma-MIR398b, zma-MIR399g, zma-MIR399h, zma-MIR399i, zma-MIR399j, zma-MIR408b, zma-MIR482, zma-MIR528a, zma-MIR528b, zma-MIR529, zma-MIR827, zma-MIR1432, zma-MIR444a, zma-MIR444b
In this report, MiR159, miR169 and miR319 were all down-regulated with miR159 being down-regulated by 7.7 folds, the most down-regulated miRNA family in imbibed seed. [score:10]
In Arabidopsis, the expression of NF-YA5 was regulated by miR169 and overexpression of NF-YA5 caused hypersensitivity to ABA during seed germination [47], [48]. [score:6]
A-K represented the expression profiles of some predicted target genes of miR156, miR164, miR166, miR167, miR168, miR169, miR319, miR393, miR408, miR528 and zma-miRn6 in dry and imbibed seeds, respectively. [score:5]
These 17 targets were targets of 11 miRNA families (miR156, miR164, miR166, miR167, miR168, miR169, miR319, miR393, miR408, miR528 and zma-miRn6). [score:5]
The 12 down-regulated miRNA families were miR156, miR159, miR164, miR166, miR167, miR168, miR169, miR172, miR319, miR393, miR394 and miR397. [score:4]
The predicted target gene of miR169 was nuclear factor YA. [score:3]
In our degredome dataset, NF-YA5 was the most abundance target gene of miR169. [score:3]
The largest miRNA family size identified was miR166 that consisted of 14 members and miR156/157, miR167 and miR169 possessed 12, 10 and 9 members, respectively; whereas miR162, miR529, miR827 and miR1432 had only one member detected in the maize seeds (Figure 4). [score:1]
[1 to 20 of 8 sentences]
7
[+] score: 36
As illustrated in Figure 6, the expression of miR169, miR395, miR827 and miRC1 was down-regulated by N-limitation and formed the first subgroup. [score:6]
Our results also showed that miR169 was strongly down-regulated by N starvation, and transgenic Arabidopsis plants overexpressing MIR169a accumulated less N and were more sensitive to N stress than the wild type [24]. [score:6]
Our previous research also showed that miR169 affected drought-resistance and N-limitation responses in Arabidopsis via inhibition of its targets, HAP2 transcription factors [17], [24]. [score:5]
The newly identified zma-miR169s, zma-miR169t, zma-miR169u, and zma-miR169v (identified by small RNA deep sequencing) and zma-miR169w (identified by degradome) were also downregulated in both shoots and roots by N deficiency (Table S4), which was consistent with the conserved zma-miR169, suggesting again the reliability of the sequencing data. [score:4]
The downregulation of miR169 caused by N deficiency in both shoots and roots agreed with our previous reports on Arabidopsis (Figure 3A and B), indicating the reliability of our sequencing data. [score:4]
In Medicago truncatula, miR169 is the key regulator for the differentiation of nodule primoridia [15]. [score:2]
Recently, substantial research has been directed at improving the N-use efficiency of plants, and our previous results clearly demonstrated that miR169 was involved in N-deficiency responses in Arabidopsis [24]. [score:2]
Contrary to the low abundance of newly identified miRNAs, zm-miR169w was much more abundant than the conserved zma-miR169, indicating the important roles of zma-miR169w in various developmental processes or responses to abiotic stresses as is the case for other orthologs. [score:2]
Among the novel miRNAs, miRC47 was the homologue of zma-miR169 and re-designated as zma-miR169w. [score:1]
The newly identified zma-miR169w was much more abundant than the conserved zma-miR169, whereas the abundances of miRC48–51 were relative low (Table S4). [score:1]
In addition, we identified three, five, and one new member for the families of miR171, miR169, and miR398, respectively (Table 1 and Table S3). [score:1]
miRC16, miRC27 (three different genomic loci), and miRC24 were the orthologs of zma-miR169 and zma-miR398, respectively. [score:1]
Through library sequencing and analysis, we discovered a total of 99 absolutely new loci belonging to 47 miRNA families by small RNA deep sequencing and degradome sequencing, as well as 9 new loci were the paralogs of previously reported miR169, miR171, and miR398. [score:1]
[1 to 20 of 13 sentences]
8
[+] score: 27
The expression levels of the miR169 targets were up-regulated in the 7 [th], 8 [th] and 9 [th] internodes in ‘Xun9058’ compared with in the corresponding internodes of ‘Xun928’. [score:7]
The over expression of GmNFYA3, a target gene of miR169, resulted in reduced leaf water loss and enhanced drought tolerance in Arabidopsis. [score:5]
However, the expression level of the targets of zma-miR164f, h, zma-miR167, zma-miR169 and zma-miR393 were not negatively correlated with the miRNA levels in the 7 [th] to 9 [th] internodes of the two inbred lines. [score:5]
Most of the targets were found to be transcription factors (TFs), such as auxin response factors (miR160 and miR167), growth -regulating factor (miR396), N-acetylcysteine domain containing protein (miR164), SQUAMOSA promoter -binding protein-like (miR156) and nuclear TF Y (miR169). [score:4]
NF-YA3, NF-YA5 and NF-YA6 were all targets of miR169 in this study. [score:3]
However, the miRNAs zma-miR164, zma-miR167, zma-miR169 and zma-miR393 had multiple members and targeted multiple genes. [score:3]
[1 to 20 of 6 sentences]
9
[+] score: 23
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156c, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR397a, osa-MIR397b, osa-MIR398a, osa-MIR398b, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR160e, osa-MIR160f, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR172d, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, zma-MIR156d, zma-MIR156f, zma-MIR156g, zma-MIR156b, zma-MIR156c, zma-MIR156e, zma-MIR156a, zma-MIR156h, zma-MIR156i, zma-MIR160a, zma-MIR160c, zma-MIR160d, zma-MIR160b, zma-MIR164a, zma-MIR164d, zma-MIR164b, zma-MIR164c, zma-MIR169a, zma-MIR169b, zma-MIR167a, zma-MIR167b, zma-MIR167d, zma-MIR167c, zma-MIR160e, zma-MIR166a, zma-MIR166h, zma-MIR166e, zma-MIR166i, zma-MIR166f, zma-MIR166g, zma-MIR166b, zma-MIR166c, zma-MIR166d, zma-MIR171b, zma-MIR172a, zma-MIR172d, zma-MIR172b, zma-MIR172c, osa-MIR396e, zma-MIR396b, zma-MIR396a, zma-MIR156j, zma-MIR159a, zma-MIR159b, zma-MIR159c, zma-MIR159d, zma-MIR166k, zma-MIR166j, zma-MIR167e, zma-MIR167f, zma-MIR167g, zma-MIR167h, zma-MIR167i, zma-MIR168a, zma-MIR168b, zma-MIR169c, zma-MIR169f, zma-MIR169g, zma-MIR169h, zma-MIR169k, zma-MIR169j, zma-MIR169d, zma-MIR169e, zma-MIR172e, zma-MIR166l, zma-MIR166m, zma-MIR156k, zma-MIR160f, tae-MIR159a, tae-MIR159b, tae-MIR160, tae-MIR164, tae-MIR167a, tae-MIR1127a, osa-MIR169r, osa-MIR396f, zma-MIR396c, zma-MIR396d, osa-MIR2275a, osa-MIR2275b, zma-MIR2275a, zma-MIR2275b, zma-MIR2275c, zma-MIR2275d, osa-MIR396g, osa-MIR396h, osa-MIR396d, zma-MIR156l, zma-MIR159e, zma-MIR159f, zma-MIR159g, zma-MIR159h, zma-MIR159i, zma-MIR159j, zma-MIR159k, zma-MIR160g, zma-MIR164e, zma-MIR164f, zma-MIR164g, zma-MIR164h, zma-MIR166n, zma-MIR167j, zma-MIR169l, zma-MIR169m, zma-MIR169n, zma-MIR169o, zma-MIR169p, zma-MIR169q, zma-MIR169r, zma-MIR396e, zma-MIR396f, zma-MIR396g, zma-MIR396h, zma-MIR397a, zma-MIR397b, zma-MIR398a, zma-MIR398b, hvu-MIR156a, tae-MIR156, hvu-MIR159b, hvu-MIR159a, hvu-MIR166a, tae-MIR167b, hvu-MIR168, hvu-MIR169, tae-MIR169, hvu-MIR397a, tae-MIR398, tae-MIR171b, hvu-MIR166b, hvu-MIR166c, osa-MIR2275c, osa-MIR2275d, tae-MIR1122b, tae-MIR9653a, tae-MIR9654a, tae-MIR9656, tae-MIR9657a, tae-MIR9659, tae-MIR9660, tae-MIR1127b, tae-MIR9661, tae-MIR396, tae-MIR9665, tae-MIR2275, tae-MIR9667, tae-MIR167c, tae-MIR1120b, tae-MIR397, tae-MIR1130b, tae-MIR5384, tae-MIR9675, tae-MIR1120c, tae-MIR9679, tae-MIR9657b, hvu-MIR397b, hvu-MIR156b, tae-MIR9653b
miR169 targets a CCAAT-box transcription factor, which is involved in diverse processes, such as embryo development, flowering time control and root development [53]. [score:5]
These results suggested that miR171b*, miR1127* and miR169* might be de facto miRNAs with important regulatory functions in specific tissues and developmental stages. [score:3]
Four of the 15 known miRNA families, including miR169, miR166, miR164 and miR160 were preferentially expressed in the developing seeds with the logarithm of the fold changes of 0.3 ~ 3.0. [score:3]
Of the 15 known miRNA families, 4 (miR169, miR166, miR164 and miR160) were preferentially expressed in the developing seeds (with the logarithm of the fold changes of 0.3 ~ 3.0 in the developing seeds, more than those in the flag leaves) (Figure  3a, Table  2). [score:3]
From 5 days post-anthesis to 20 days post-anthesis, miR164 and miR160 increased in abundance in the developing seeds, whereas miR169 decreased, suggesting their coordinating functions in the different developmental stages of wheat seed. [score:2]
The decreased abundance of miR169 from the 5-d seeds to the 20-d seeds was coordinated with its functions in seed development. [score:2]
From 5 days post-anthesis to 20 days post-anthesis, miR164 and miR160 increased in abundance, whereas miR169 decreased, suggesting that these miRNAs have coordinating functions in the different developmental stages of wheat seed. [score:2]
However, mature miRNA sequences for miR171b*, miR1127* and miR169* were not found in any of the five tissues tested. [score:1]
From 5 DPA to 20 DPA, miR164 and miR160 increased in abundance, whereas miR169 decreased (Figure  3a, Table  2). [score:1]
The highest level of miR169* was observed in the seedlings (28 reads), followed by the flag leaves (5 reads). [score:1]
[1 to 20 of 10 sentences]
10
[+] score: 22
That is, they all (miR159 and its target with IAA; miR166, miR169, miR393, miR396, and their targets with ZR + iPA; miR159, miR396 and their targets with GA; miR396 and their targets with BR; miR159, miR396 and their targets with JA; miR160, miR164, miR166, miR169, miR172, and miR396 and their targets with ABA) showed a significant positive and/or negative correlation with the phytohormone levels. [score:13]
Eight known miRNAs (miR159, miR160, miR164, miR166, miR169, miR172, miR393, and miR396), four newly identified miRNAs, and 12 target genes were selected for qRT-PCR validation. [score:3]
In addition, miR169 and its targets, members of the NF-YA family of TFs, were previously found to exert homeotic control over the carpel identity gene AG in Petunia hybrida and Antirrhinum majus (Cartolano et al., 2007). [score:3]
Overexpression of miR169 was also found to cause changes in fruit shape and size in tomato (Teotia et al., 2015). [score:3]
[1 to 20 of 4 sentences]
11
[+] score: 22
Other miRNAs from this paper: zma-MIR156d, zma-MIR156f, zma-MIR156g, zma-MIR156b, zma-MIR156c, zma-MIR156e, zma-MIR156a, zma-MIR156h, zma-MIR156i, zma-MIR160a, zma-MIR160c, zma-MIR160d, zma-MIR160b, zma-MIR164a, zma-MIR164d, zma-MIR164b, zma-MIR164c, zma-MIR169a, zma-MIR169b, zma-MIR160e, zma-MIR166a, zma-MIR166h, zma-MIR166e, zma-MIR166i, zma-MIR166f, zma-MIR166g, zma-MIR166b, zma-MIR166c, zma-MIR166d, zma-MIR171a, zma-MIR171b, zma-MIR172a, zma-MIR172d, zma-MIR172b, zma-MIR172c, zma-MIR171d, zma-MIR171f, zma-MIR395b, zma-MIR395c, zma-MIR395a, zma-MIR396b, zma-MIR396a, zma-MIR399a, zma-MIR399c, zma-MIR399b, zma-MIR399d, zma-MIR399e, zma-MIR399f, zma-MIR156j, zma-MIR159a, zma-MIR159b, zma-MIR159c, zma-MIR159d, zma-MIR166k, zma-MIR166j, zma-MIR168a, zma-MIR168b, zma-MIR169c, zma-MIR169f, zma-MIR169g, zma-MIR169h, zma-MIR169k, zma-MIR169j, zma-MIR169d, zma-MIR169e, zma-MIR171c, zma-MIR171j, zma-MIR171e, zma-MIR171i, zma-MIR171g, zma-MIR172e, zma-MIR166l, zma-MIR166m, zma-MIR171k, zma-MIR171h, zma-MIR393a, zma-MIR156k, zma-MIR160f, zma-MIR396c, zma-MIR396d, zma-MIR2118a, zma-MIR2118b, zma-MIR2118c, zma-MIR2118d, zma-MIR2118e, zma-MIR2118f, zma-MIR2118g, zma-MIR2275a, zma-MIR2275b, zma-MIR2275c, zma-MIR2275d, zma-MIR156l, zma-MIR159e, zma-MIR159f, zma-MIR159g, zma-MIR159h, zma-MIR159i, zma-MIR159j, zma-MIR159k, zma-MIR160g, zma-MIR164e, zma-MIR164f, zma-MIR164g, zma-MIR164h, zma-MIR166n, zma-MIR169l, zma-MIR169m, zma-MIR169n, zma-MIR169o, zma-MIR169p, zma-MIR169q, zma-MIR169r, zma-MIR171l, zma-MIR171m, zma-MIR171n, zma-MIR390a, zma-MIR393b, zma-MIR393c, zma-MIR395d, zma-MIR395e, zma-MIR395f, zma-MIR395g, zma-MIR395h, zma-MIR395i, zma-MIR395j, zma-MIR395k, zma-MIR395l, zma-MIR395m, zma-MIR395n, zma-MIR395o, zma-MIR395p, zma-MIR396e, zma-MIR396f, zma-MIR396g, zma-MIR396h, zma-MIR399g, zma-MIR399h, zma-MIR399i, zma-MIR399j, zma-MIR529, zma-MIR390b
The target distributions of miRNA families themselves were investigated, which showed that zma-miR166, zma-miR396, zma-miR529, zma-miR164, and zma-miR169 had the most targets, with 6, 6, 5, and 5 target mRNAs, respectively, while zma-miR160, zma-miR390, zma-miR393, and zma-miR2275 had the fewest target mRNAs, with a single target each (Figure 3). [score:9]
Conversely, in V-372, members of 7 families—zma-miR164, zma-miR169, zma-miR393, zma-miR396, zma-miR399, zma-miR529, and zma-miR2275—were significantly up-regulated; and zma-miR156, zma-miR159, zma-miR166 and zma-miR395 families were significantly down-regulated. [score:7]
In tolerant genotype HKI-1532, 16 miRNAs belonging to the zma-miR159, zma-miR160, zma-miR164, zma-miR166, zma-miR169, zma-miR390, zma-miR395, zma-miR396, and zma-miR399 families were significantly up-regulated. [score:4]
m Homeobox-leucine zipper protein athb-15-like miR169 zma-miR169-I,j,k,l gnl|GNOMON|74364063. [score:1]
m Nuclear transcription factor y subunit a-3 zma-miR169-I,j,k,l gnl|GNOMON|74366063. [score:1]
[1 to 20 of 5 sentences]
12
[+] score: 21
Other miRNAs from this paper: zma-MIR156d, zma-MIR156f, zma-MIR156g, zma-MIR156b, zma-MIR156c, zma-MIR156e, zma-MIR156a, zma-MIR156h, zma-MIR156i, zma-MIR160a, zma-MIR160c, zma-MIR160d, zma-MIR160b, zma-MIR164a, zma-MIR164d, zma-MIR164b, zma-MIR164c, zma-MIR169a, zma-MIR169b, zma-MIR167a, zma-MIR167b, zma-MIR167d, zma-MIR167c, zma-MIR160e, zma-MIR171a, zma-MIR171b, zma-MIR172a, zma-MIR172d, zma-MIR172b, zma-MIR172c, zma-MIR171d, zma-MIR171f, zma-MIR394a, zma-MIR394b, zma-MIR395b, zma-MIR395c, zma-MIR395a, zma-MIR396b, zma-MIR396a, zma-MIR399a, zma-MIR399c, zma-MIR399b, zma-MIR399d, zma-MIR399e, zma-MIR399f, zma-MIR156j, zma-MIR159a, zma-MIR159b, zma-MIR159c, zma-MIR159d, zma-MIR319a, zma-MIR319c, zma-MIR319b, zma-MIR319d, zma-MIR167e, zma-MIR167f, zma-MIR167g, zma-MIR167h, zma-MIR167i, zma-MIR169c, zma-MIR169f, zma-MIR169g, zma-MIR169h, zma-MIR169k, zma-MIR169j, zma-MIR169d, zma-MIR169e, zma-MIR171c, zma-MIR171j, zma-MIR171e, zma-MIR171i, zma-MIR171g, zma-MIR172e, zma-MIR171k, zma-MIR171h, zma-MIR408a, zma-MIR156k, zma-MIR160f, zma-MIR396c, zma-MIR396d, zma-MIR156l, zma-MIR159e, zma-MIR159f, zma-MIR159g, zma-MIR159h, zma-MIR159i, zma-MIR159j, zma-MIR159k, zma-MIR160g, zma-MIR164e, zma-MIR164f, zma-MIR164g, zma-MIR164h, zma-MIR167j, zma-MIR169l, zma-MIR169m, zma-MIR169n, zma-MIR169o, zma-MIR169p, zma-MIR169q, zma-MIR169r, zma-MIR171l, zma-MIR171m, zma-MIR171n, zma-MIR395d, zma-MIR395e, zma-MIR395f, zma-MIR395g, zma-MIR395h, zma-MIR395i, zma-MIR395j, zma-MIR395k, zma-MIR395l, zma-MIR395m, zma-MIR395n, zma-MIR395o, zma-MIR395p, zma-MIR396e, zma-MIR396f, zma-MIR396g, zma-MIR396h, zma-MIR399g, zma-MIR399h, zma-MIR399i, zma-MIR399j, zma-MIR408b, zma-MIR529
Similarly, the expression trends of miR159, miR169, and miR172 were negatively correlated with those of their target genes in the inbred line Yu87-1, while the expression levels of miR171 and miR529 were positively correlated with their target genes. [score:9]
Among the candidate miRNAs, miR159, miR169, miR394, and miR529 were up-regulated from 20 to 30DAP, and miR172, miR167, and miR171 were down-regulated from 20 to 30DAP. [score:7]
In contrast, the expression trends of miR169 and miR394 were not opposite those of their target genes. [score:5]
[1 to 20 of 3 sentences]
13
[+] score: 19
Other genes involved in reproductive development that are regulated by miRNAs are ARF6 and ARF8 (regulating anther and ovule development, including anther dehiscence, targeted by miR167), homeotic class C genes (defining flower whorl architecture, targeted by miR169), and the APETALA2 homeotic gene and TOE1 (involved in flower whorl architecture, spikelet determination, and flowering time, targeted by miR172; Aukerman and Sakai, 2003; Wu et al., 2006; Cartolano et al., 2007). [score:11]
In addition, distinct family members of MIR169 and MIR159 were up- or down-regulated in meiocytes, pointing to an intricate fine-tuning of them and their target gene expression. [score:8]
[1 to 20 of 2 sentences]
14
[+] score: 15
Other miRNAs from this paper: zma-MIR156d, zma-MIR156f, zma-MIR156g, zma-MIR156b, zma-MIR156c, zma-MIR156e, zma-MIR156a, zma-MIR156h, zma-MIR156i, zma-MIR164a, zma-MIR164d, zma-MIR164b, zma-MIR164c, zma-MIR169a, zma-MIR169b, zma-MIR167a, zma-MIR167b, zma-MIR167d, zma-MIR167c, zma-MIR166a, zma-MIR166h, zma-MIR166e, zma-MIR166i, zma-MIR166f, zma-MIR166g, zma-MIR166b, zma-MIR166c, zma-MIR166d, zma-MIR171a, zma-MIR171b, zma-MIR172a, zma-MIR172d, zma-MIR172b, zma-MIR172c, zma-MIR171d, zma-MIR171f, zma-MIR395b, zma-MIR395c, zma-MIR395a, zma-MIR399a, zma-MIR399c, zma-MIR399b, zma-MIR399d, zma-MIR399e, zma-MIR399f, zma-MIR156j, zma-MIR159a, zma-MIR159b, zma-MIR159c, zma-MIR159d, zma-MIR166k, zma-MIR166j, zma-MIR167e, zma-MIR167f, zma-MIR167g, zma-MIR167h, zma-MIR167i, zma-MIR169c, zma-MIR169f, zma-MIR169g, zma-MIR169h, zma-MIR169k, zma-MIR169j, zma-MIR169d, zma-MIR169e, zma-MIR171c, zma-MIR171j, zma-MIR171e, zma-MIR171i, zma-MIR171g, zma-MIR172e, zma-MIR166l, zma-MIR166m, zma-MIR171k, zma-MIR171h, zma-MIR393a, zma-MIR156k, zma-MIR156l, zma-MIR159e, zma-MIR159f, zma-MIR159g, zma-MIR159h, zma-MIR159i, zma-MIR159j, zma-MIR159k, zma-MIR164e, zma-MIR164f, zma-MIR164g, zma-MIR164h, zma-MIR166n, zma-MIR167j, zma-MIR169l, zma-MIR169m, zma-MIR169n, zma-MIR169o, zma-MIR169p, zma-MIR169q, zma-MIR169r, zma-MIR171l, zma-MIR171m, zma-MIR171n, zma-MIR390a, zma-MIR393b, zma-MIR393c, zma-MIR395d, zma-MIR395e, zma-MIR395f, zma-MIR395g, zma-MIR395h, zma-MIR395i, zma-MIR395j, zma-MIR395k, zma-MIR395l, zma-MIR395m, zma-MIR395n, zma-MIR395o, zma-MIR395p, zma-MIR398a, zma-MIR398b, zma-MIR399g, zma-MIR399h, zma-MIR399i, zma-MIR399j, zma-MIR528a, zma-MIR528b, zma-MIR529, zma-MIR827, zma-MIR390b
Target genes of miR169, miR171 and miR172 families are transcription factors; and target genes of miR393, miR395 and miR827 families encode transporter related proteins (S2 Table), which are involved in signal transductions. [score:5]
With the exception of miR166, whose expression did not vary across the four stages, and miR169, miR172, miR393, and miR395, which all had relatively more expression at the 6 [th] DAP, the others were consistent with the sequencing data (Fig 3). [score:5]
Conserved miRNA families with higher expression at the transitional stage such as miR169, miR171, and miR393 might play roles in transcription regulation and signal transduction. [score:4]
This group includes 11 conserved and 7 novel miRNA families, such as the miR169, miR171, miR172, miR393, miR395 and miR827 families. [score:1]
[1 to 20 of 4 sentences]
15
[+] score: 13
Other miRNAs from this paper: zma-MIR156d, zma-MIR156f, zma-MIR156g, zma-MIR156b, zma-MIR156c, zma-MIR156e, zma-MIR156a, zma-MIR156h, zma-MIR156i, zma-MIR160a, zma-MIR160c, zma-MIR160d, zma-MIR160b, zma-MIR164a, zma-MIR164d, zma-MIR164b, zma-MIR164c, zma-MIR169a, zma-MIR169b, zma-MIR167a, zma-MIR167b, zma-MIR167d, zma-MIR167c, zma-MIR160e, zma-MIR166a, zma-MIR162, zma-MIR166h, zma-MIR166e, zma-MIR166i, zma-MIR166f, zma-MIR166g, zma-MIR166b, zma-MIR166c, zma-MIR166d, zma-MIR171a, zma-MIR171b, zma-MIR172a, zma-MIR172d, zma-MIR172b, zma-MIR172c, zma-MIR171d, zma-MIR171f, zma-MIR394a, zma-MIR394b, zma-MIR395b, zma-MIR395c, zma-MIR395a, zma-MIR396b, zma-MIR396a, zma-MIR399a, zma-MIR399c, zma-MIR399b, zma-MIR399d, zma-MIR399e, zma-MIR399f, zma-MIR156j, zma-MIR159a, zma-MIR159b, zma-MIR159c, zma-MIR159d, zma-MIR319a, zma-MIR319c, zma-MIR319b, zma-MIR319d, zma-MIR166k, zma-MIR166j, zma-MIR167e, zma-MIR167f, zma-MIR167g, zma-MIR167h, zma-MIR167i, zma-MIR168a, zma-MIR168b, zma-MIR169c, zma-MIR169f, zma-MIR169g, zma-MIR169h, zma-MIR169k, zma-MIR169j, zma-MIR169d, zma-MIR169e, zma-MIR171c, zma-MIR171j, zma-MIR171e, zma-MIR171i, zma-MIR171g, zma-MIR172e, zma-MIR166l, zma-MIR166m, zma-MIR171k, zma-MIR171h, zma-MIR393a, zma-MIR408a, zma-MIR156k, zma-MIR160f, zma-MIR396c, zma-MIR396d, zma-MIR156l, zma-MIR159e, zma-MIR159f, zma-MIR159g, zma-MIR159h, zma-MIR159i, zma-MIR159j, zma-MIR159k, zma-MIR160g, zma-MIR164e, zma-MIR164f, zma-MIR164g, zma-MIR164h, zma-MIR166n, zma-MIR167j, zma-MIR169l, zma-MIR169m, zma-MIR169n, zma-MIR169o, zma-MIR169p, zma-MIR169q, zma-MIR169r, zma-MIR171l, zma-MIR171m, zma-MIR171n, zma-MIR393b, zma-MIR393c, zma-MIR395d, zma-MIR395e, zma-MIR395f, zma-MIR395g, zma-MIR395h, zma-MIR395i, zma-MIR395j, zma-MIR395k, zma-MIR395l, zma-MIR395m, zma-MIR395n, zma-MIR395o, zma-MIR395p, zma-MIR396e, zma-MIR396f, zma-MIR396g, zma-MIR396h, zma-MIR397a, zma-MIR397b, zma-MIR398a, zma-MIR398b, zma-MIR399g, zma-MIR399h, zma-MIR399i, zma-MIR399j, zma-MIR408b, zma-MIR482, zma-MIR528a, zma-MIR528b, zma-MIR529, zma-MIR827, zma-MIR1432, zma-MIR444a, zma-MIR444b
In addition to these families, target genes of miR169, miR319, miR408 and miR529 were involved in transcription regulation, whereas miR159, miR397, and miR399 target genes were involved in response to stimulus. [score:6]
In contrast, miR156, miR159, miR167, miR168, miR169, miR171, miR319, and miR529 had high expression counts (slightly over 3,000 RPM, on average). [score:3]
The same trend is observed in many other miRNA families including miR164, miR166, miR169, miR171, miR172, miR319 and miR396 as they target various families of transcription factors such as NAM (No Apical Meristem) proteins, bZIP (basic-leucine Zipper) genes, CBF (CCAAT binding factor), GRAS transcription factor, AP2 (APETALA2)-EREBP (Ethylene-Responsive Element Binding Proteins), CCCH type zinc finger protein and TCP (Teosinite branched, Cycloidea, and PCF), GRF transcription factor families respectively [12], [71], [85]– [87]. [score:3]
Alternative non-spliced transcripts were found for three genes: miR159a, miR166g, and miR169i. [score:1]
[1 to 20 of 4 sentences]
16
[+] score: 11
Other miRNAs from this paper: ath-MIR156a, ath-MIR156b, ath-MIR156c, ath-MIR156d, ath-MIR156e, ath-MIR156f, ath-MIR159a, ath-MIR160a, ath-MIR160b, ath-MIR160c, ath-MIR162a, ath-MIR162b, ath-MIR164a, ath-MIR164b, ath-MIR166a, ath-MIR166b, ath-MIR166c, ath-MIR166d, ath-MIR166e, ath-MIR166f, ath-MIR166g, ath-MIR167a, ath-MIR167b, ath-MIR168a, ath-MIR168b, ath-MIR169a, ath-MIR172a, ath-MIR172b, ath-MIR159b, osa-MIR156a, osa-MIR156b, osa-MIR156c, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR162a, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, ath-MIR167d, ath-MIR169b, ath-MIR169c, ath-MIR169d, ath-MIR169e, ath-MIR169f, ath-MIR169g, ath-MIR169h, ath-MIR169i, ath-MIR169j, ath-MIR169k, ath-MIR169l, ath-MIR169m, ath-MIR169n, ath-MIR172c, ath-MIR172d, ath-MIR395a, ath-MIR395b, ath-MIR395c, ath-MIR395d, ath-MIR395e, ath-MIR395f, ath-MIR396a, ath-MIR396b, ath-MIR399a, ath-MIR399b, ath-MIR399c, ath-MIR399d, ath-MIR399e, ath-MIR399f, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR399a, osa-MIR399b, osa-MIR399c, osa-MIR399d, osa-MIR399e, osa-MIR399f, osa-MIR399g, osa-MIR399h, osa-MIR399i, osa-MIR399j, osa-MIR399k, ath-MIR408, ath-MIR156g, ath-MIR156h, ath-MIR159c, ath-MIR164c, ath-MIR167c, ath-MIR172e, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR160e, osa-MIR160f, osa-MIR162b, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR408, osa-MIR172d, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, zma-MIR156d, zma-MIR156f, zma-MIR156g, zma-MIR156b, zma-MIR156c, zma-MIR156e, zma-MIR156a, zma-MIR156h, zma-MIR156i, zma-MIR160a, zma-MIR160c, zma-MIR160d, zma-MIR160b, zma-MIR164a, zma-MIR164d, zma-MIR164b, zma-MIR164c, zma-MIR169a, zma-MIR169b, zma-MIR167a, zma-MIR167b, zma-MIR167d, zma-MIR167c, zma-MIR160e, zma-MIR166a, zma-MIR162, zma-MIR166h, zma-MIR166e, zma-MIR166i, zma-MIR166f, zma-MIR166g, zma-MIR166b, zma-MIR166c, zma-MIR166d, zma-MIR172a, zma-MIR172d, zma-MIR172b, zma-MIR172c, osa-MIR396e, zma-MIR395b, zma-MIR395c, zma-MIR395a, zma-MIR396b, zma-MIR396a, zma-MIR399a, zma-MIR399c, zma-MIR399b, zma-MIR399d, zma-MIR399e, zma-MIR399f, zma-MIR156j, zma-MIR159a, zma-MIR159b, zma-MIR159c, zma-MIR159d, zma-MIR166k, zma-MIR166j, zma-MIR167e, zma-MIR167f, zma-MIR167g, zma-MIR167h, zma-MIR167i, zma-MIR168a, zma-MIR168b, zma-MIR169c, zma-MIR169f, zma-MIR169g, zma-MIR169h, zma-MIR169k, zma-MIR169j, zma-MIR169d, zma-MIR169e, zma-MIR172e, zma-MIR166l, zma-MIR166m, zma-MIR171h, zma-MIR408a, zma-MIR156k, zma-MIR160f, osa-MIR529a, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR529b, osa-MIR169r, osa-MIR396f, zma-MIR396c, zma-MIR396d, osa-MIR2118a, osa-MIR2118b, osa-MIR2118c, osa-MIR2118d, osa-MIR2118e, osa-MIR2118f, osa-MIR2118g, osa-MIR2118h, osa-MIR2118i, osa-MIR2118j, osa-MIR2118k, osa-MIR2118l, osa-MIR2118m, osa-MIR2118n, osa-MIR2118o, osa-MIR2118p, osa-MIR2118q, osa-MIR2118r, osa-MIR2275a, osa-MIR2275b, zma-MIR2118a, zma-MIR2118b, zma-MIR2118c, zma-MIR2118d, zma-MIR2118e, zma-MIR2118f, zma-MIR2118g, zma-MIR2275a, zma-MIR2275b, zma-MIR2275c, zma-MIR2275d, osa-MIR396g, osa-MIR396h, osa-MIR396d, zma-MIR156l, zma-MIR159e, zma-MIR159f, zma-MIR159g, zma-MIR159h, zma-MIR159i, zma-MIR159j, zma-MIR159k, zma-MIR160g, zma-MIR164e, zma-MIR164f, zma-MIR164g, zma-MIR164h, zma-MIR166n, zma-MIR167j, zma-MIR169l, zma-MIR169m, zma-MIR169n, zma-MIR169o, zma-MIR169p, zma-MIR169q, zma-MIR169r, zma-MIR395d, zma-MIR395e, zma-MIR395f, zma-MIR395g, zma-MIR395h, zma-MIR395i, zma-MIR395j, zma-MIR395k, zma-MIR395l, zma-MIR395m, zma-MIR395n, zma-MIR395o, zma-MIR395p, zma-MIR396e, zma-MIR396f, zma-MIR396g, zma-MIR396h, zma-MIR399g, zma-MIR399h, zma-MIR399i, zma-MIR399j, zma-MIR408b, zma-MIR529, osa-MIR395x, osa-MIR395y, osa-MIR2275c, osa-MIR2275d, ath-MIR156i, ath-MIR156j
For instance, miR169 targeted seven different CCAAT -binding transcription factors in the four stages (category 0 or 2) with very high abundance, but it also guided the slicing of three other non-conserved targets with very low abundance. [score:5]
Four identified targets of miRs4 (category 0 or 2) were the same as those of miR169, providing further evidence that miRs4 is a member of the miR169 family. [score:3]
Click here for file The sequence conservation of mature miRNAs between members of known miR169 family and miRs4. [score:1]
The sequence conservation of mature miRNAs between members of known miR169 family and miRs4. [score:1]
The sequence of miRs4 was similar to that of members of the miR169 family (Additional file 7), indicating that miRs4 may be a member of that family. [score:1]
[1 to 20 of 5 sentences]
17
[+] score: 10
Further investigation indicated that these tandem miRNAs also exhibited altered expression patterns during kernel and endosperm development, e. g., both Zma-miR319.1 and Zma-miR169.1 were predominantly expressed in 0, 3, and 5 DAP kernels, whereas Zma-miR159.1 and Zma-miR2001.1 were preferentially expressed in endosperms (Figures 5B–E). [score:6]
Similarly, the precursor of Zma-miR169 also yields an accompanying miRNA (Zma-miR169.1), although its Zma-miR169.1 [*] was not detected, possibly due to a relatively low expression level (Figure 5A). [score:3]
Zma-miR169& Zma-miR169.1, Zma-miR319 and Zma-miR319.1, Zma-miR2001 and Zma-miR2001.1, Zma-miR2013 and Zma-miR2013.1 were generated from a single precursor. [score:1]
[1 to 20 of 3 sentences]
18
[+] score: 10
Expression profiles were established based on stem-loop real-time RT-PCR analysis of six selected miRNAs, comprising miR156, miR164, miR167, miR168, miR169 and miR396, as well as real-time RT-PCR analysis of their target mRNAs. [score:5]
NFYA5 was a target gene of miR169 and is post-transcriptionally regulated by miR169 [44]. [score:4]
In the present study, the maize miRNA zma-miR169 was repressed over dominantly, which might influence ABA-responsive transcription and result in enhancement of the seed germination capability of hybrid seeds. [score:1]
[1 to 20 of 3 sentences]
19
[+] score: 8
Expression of zma-miR169 miRNAs and their target ZmNF-YA genes in response to abiotic stress in maize leaves. [score:5]
Some experimental evidence has shown that microRNA-169 and its target NF-Y family genes play an important role in maize under stress conditions (Luan et al., 2014, 2015). [score:3]
[1 to 20 of 2 sentences]
20
[+] score: 7
Other miRNAs from this paper: zma-MIR156d, zma-MIR156f, zma-MIR156g, zma-MIR156b, zma-MIR156c, zma-MIR156e, zma-MIR156a, zma-MIR156h, zma-MIR156i, zma-MIR160a, zma-MIR160c, zma-MIR160d, zma-MIR160b, zma-MIR164a, zma-MIR164d, zma-MIR164b, zma-MIR164c, zma-MIR169a, zma-MIR169b, zma-MIR167a, zma-MIR167b, zma-MIR167d, zma-MIR167c, zma-MIR160e, zma-MIR166a, zma-MIR166h, zma-MIR166e, zma-MIR166i, zma-MIR166f, zma-MIR166g, zma-MIR166b, zma-MIR166c, zma-MIR166d, zma-MIR171a, zma-MIR171b, zma-MIR171d, zma-MIR171f, zma-MIR395b, zma-MIR395c, zma-MIR395a, zma-MIR396b, zma-MIR396a, zma-MIR156j, zma-MIR159a, zma-MIR159b, zma-MIR159c, zma-MIR159d, zma-MIR166k, zma-MIR166j, zma-MIR167e, zma-MIR167f, zma-MIR167g, zma-MIR167h, zma-MIR167i, zma-MIR168a, zma-MIR168b, zma-MIR169c, zma-MIR169f, zma-MIR169g, zma-MIR169h, zma-MIR169k, zma-MIR169j, zma-MIR169d, zma-MIR169e, zma-MIR171c, zma-MIR171j, zma-MIR171e, zma-MIR171i, zma-MIR171g, zma-MIR166l, zma-MIR166m, zma-MIR171k, zma-MIR171h, zma-MIR393a, zma-MIR156k, zma-MIR160f, zma-MIR396c, zma-MIR396d, zma-MIR156l, zma-MIR159e, zma-MIR159f, zma-MIR159g, zma-MIR159h, zma-MIR159i, zma-MIR159j, zma-MIR159k, zma-MIR160g, zma-MIR164e, zma-MIR164f, zma-MIR164g, zma-MIR164h, zma-MIR166n, zma-MIR167j, zma-MIR169l, zma-MIR169m, zma-MIR169n, zma-MIR169o, zma-MIR169p, zma-MIR169q, zma-MIR169r, zma-MIR171l, zma-MIR171m, zma-MIR171n, zma-MIR390a, zma-MIR393b, zma-MIR393c, zma-MIR395d, zma-MIR395e, zma-MIR395f, zma-MIR395g, zma-MIR395h, zma-MIR395i, zma-MIR395j, zma-MIR395k, zma-MIR395l, zma-MIR395m, zma-MIR395n, zma-MIR395o, zma-MIR395p, zma-MIR396e, zma-MIR396f, zma-MIR396g, zma-MIR396h, zma-MIR528a, zma-MIR528b, zma-MIR827
For example, miR169 over -expression confers enhanced drought tolerance in tomato [54]. [score:3]
Members of several other miRNA families, including zma-miR164, zma-miR167, zma-miR169, zma-miR171, and zma-miR827, were also highly expressed in MS and PS; they were barely detected in MP and GP, however, indicating their specific roles in maize female reproductive tissues. [score:3]
Five of them—miR169, miR171, miR393, miR395, and miR528—are responsive to drought and/or salt stress [47]– [53]. [score:1]
[1 to 20 of 3 sentences]
21
[+] score: 4
The authors suggested miR164, miR169, miR528, and miR529 might be primarily participating in the process of EC induction through the regulation of targets involved in auxin and gibberellin signaling. [score:4]
[1 to 20 of 1 sentences]
22
[+] score: 4
Ni Z Hu Z Jiang Q Zhang H 2013 GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress. [score:4]
[1 to 20 of 1 sentences]
23
[+] score: 3
Other miRNAs from this paper: ath-MIR156a, ath-MIR156b, ath-MIR156c, ath-MIR156d, ath-MIR156e, ath-MIR156f, ath-MIR159a, ath-MIR160a, ath-MIR160b, ath-MIR160c, ath-MIR162a, ath-MIR162b, ath-MIR164a, ath-MIR164b, ath-MIR166a, ath-MIR166b, ath-MIR166c, ath-MIR166d, ath-MIR166e, ath-MIR166f, ath-MIR166g, ath-MIR167a, ath-MIR167b, ath-MIR169a, ath-MIR171a, ath-MIR172a, ath-MIR172b, ath-MIR159b, osa-MIR156a, osa-MIR156b, osa-MIR156c, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR162a, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR171a, ath-MIR167d, ath-MIR169b, ath-MIR169c, ath-MIR169d, ath-MIR169e, ath-MIR169f, ath-MIR169g, ath-MIR169h, ath-MIR169i, ath-MIR169j, ath-MIR169k, ath-MIR169l, ath-MIR169m, ath-MIR169n, ath-MIR171b, ath-MIR171c, ath-MIR172c, ath-MIR172d, ath-MIR393a, ath-MIR393b, ath-MIR394a, ath-MIR394b, ath-MIR395a, ath-MIR395b, ath-MIR395c, ath-MIR395d, ath-MIR395e, ath-MIR395f, osa-MIR393a, osa-MIR394, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, ath-MIR156g, ath-MIR156h, ath-MIR159c, ath-MIR164c, ath-MIR167c, ath-MIR172e, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR160e, osa-MIR160f, osa-MIR162b, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR393b, osa-MIR172d, osa-MIR171i, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, zma-MIR156d, zma-MIR156f, zma-MIR156g, zma-MIR156b, zma-MIR156c, zma-MIR156e, zma-MIR156a, zma-MIR156h, zma-MIR156i, zma-MIR160a, zma-MIR160c, zma-MIR160d, zma-MIR160b, zma-MIR164a, zma-MIR164d, zma-MIR164b, zma-MIR164c, zma-MIR169a, zma-MIR169b, zma-MIR167a, zma-MIR167b, zma-MIR167d, zma-MIR167c, zma-MIR160e, zma-MIR166a, zma-MIR162, zma-MIR166h, zma-MIR166e, zma-MIR166i, zma-MIR166f, zma-MIR166g, zma-MIR166b, zma-MIR166c, zma-MIR166d, zma-MIR171a, zma-MIR171b, zma-MIR172a, zma-MIR172d, zma-MIR172b, zma-MIR172c, zma-MIR171d, zma-MIR171f, zma-MIR394a, zma-MIR394b, zma-MIR395b, zma-MIR395c, zma-MIR395a, zma-MIR156j, zma-MIR159a, zma-MIR159b, zma-MIR159c, zma-MIR159d, zma-MIR166k, zma-MIR166j, zma-MIR167e, zma-MIR167f, zma-MIR167g, zma-MIR167h, zma-MIR167i, zma-MIR169c, zma-MIR169f, zma-MIR169g, zma-MIR169h, zma-MIR169k, zma-MIR169j, zma-MIR169d, zma-MIR169e, zma-MIR171c, zma-MIR171j, zma-MIR171e, zma-MIR171i, zma-MIR171g, zma-MIR172e, zma-MIR166l, zma-MIR166m, zma-MIR171k, zma-MIR171h, zma-MIR393a, zma-MIR156k, zma-MIR160f, osa-MIR528, osa-MIR529a, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, ath-MIR827, osa-MIR529b, osa-MIR1432, osa-MIR169r, osa-MIR827, osa-MIR2118a, osa-MIR2118b, osa-MIR2118c, osa-MIR2118d, osa-MIR2118e, osa-MIR2118f, osa-MIR2118g, osa-MIR2118h, osa-MIR2118i, osa-MIR2118j, osa-MIR2118k, osa-MIR2118l, osa-MIR2118m, osa-MIR2118n, osa-MIR2118o, osa-MIR2118p, osa-MIR2118q, osa-MIR2118r, osa-MIR2275a, osa-MIR2275b, zma-MIR2118a, zma-MIR2118b, zma-MIR2118c, zma-MIR2118d, zma-MIR2118e, zma-MIR2118f, zma-MIR2118g, zma-MIR2275a, zma-MIR2275b, zma-MIR2275c, zma-MIR2275d, zma-MIR156l, zma-MIR159e, zma-MIR159f, zma-MIR159g, zma-MIR159h, zma-MIR159i, zma-MIR159j, zma-MIR159k, zma-MIR160g, zma-MIR164e, zma-MIR164f, zma-MIR164g, zma-MIR164h, zma-MIR166n, zma-MIR167j, zma-MIR169l, zma-MIR169m, zma-MIR169n, zma-MIR169o, zma-MIR169p, zma-MIR169q, zma-MIR169r, zma-MIR171l, zma-MIR171m, zma-MIR171n, zma-MIR393b, zma-MIR393c, zma-MIR395d, zma-MIR395e, zma-MIR395f, zma-MIR395g, zma-MIR395h, zma-MIR395i, zma-MIR395j, zma-MIR395k, zma-MIR395l, zma-MIR395m, zma-MIR395n, zma-MIR395o, zma-MIR395p, zma-MIR482, zma-MIR528a, zma-MIR528b, zma-MIR529, zma-MIR827, zma-MIR1432, osa-MIR395x, osa-MIR395y, osa-MIR2275c, osa-MIR2275d, ath-MIR156i, ath-MIR156j
In comparison to other plant species, tae-miR169b in wheat and osa-miR169 in rice are the most frequently sequenced miRNAs while miR156 in rice and wheat exhibits low abundance [32]. [score:1]
The largest miRNA family size identified was miR166 that consisted of 14 members and miR156, miR169 and miR167 possessed 12, 12 and 10 members, respectively; whereas other miRNA families such as miR162, miR529, miR827 and miR1432 had only one member detected in this period. [score:1]
For example, miR156/157, miR159/319, miR166, miR169, and miR394 have been found in 51, 45, 41, 40 and 40 plant species, respectively [36- 38]. [score:1]
[1 to 20 of 3 sentences]
24
[+] score: 3
Other nutrient-responsive miRNAs, such as miRNA395 (which is involved in S -deficient responses [36]) and miRNA169 (which is related to N-starvation adaption [37]), were also differentially expressed in miRNAs between 31778 vs. [score:3]
[1 to 20 of 1 sentences]
25
[+] score: 3
Similarly, while miR169, miR528, and miR529 are more abundant in lbl1, transcript levels for their targets remain unchanged in the mutant. [score:3]
[1 to 20 of 1 sentences]
26
[+] score: 3
In addition, lncRNA3294 was the target of sly-miR169 that is engaged in drought tolerance of tomato (Zhang et al., 2011). [score:3]
[1 to 20 of 1 sentences]
27
[+] score: 2
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156c, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR169a, osa-MIR393a, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR393b, osa-MIR166m, osa-MIR166j, osa-MIR164f, zma-MIR156d, zma-MIR156f, zma-MIR156g, zma-MIR156b, zma-MIR156c, zma-MIR156e, zma-MIR156a, zma-MIR156h, zma-MIR156i, zma-MIR164a, zma-MIR164d, zma-MIR164b, zma-MIR164c, zma-MIR169a, zma-MIR169b, zma-MIR166a, zma-MIR166h, zma-MIR166e, zma-MIR166i, zma-MIR166f, zma-MIR166g, zma-MIR166b, zma-MIR166c, zma-MIR166d, osa-MIR444a, zma-MIR395b, zma-MIR395c, zma-MIR395a, zma-MIR156j, zma-MIR159a, zma-MIR159b, zma-MIR159c, zma-MIR159d, zma-MIR166k, zma-MIR166j, zma-MIR168a, zma-MIR168b, zma-MIR169c, zma-MIR169f, zma-MIR169g, zma-MIR169h, zma-MIR169k, zma-MIR169j, zma-MIR169d, zma-MIR169e, zma-MIR166l, zma-MIR166m, zma-MIR393a, zma-MIR156k, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR820a, osa-MIR820b, osa-MIR820c, osa-MIR1425, osa-MIR1428a, osa-MIR169r, osa-MIR444b, osa-MIR444c, osa-MIR444d, osa-MIR444e, osa-MIR444f, osa-MIR1428b, osa-MIR1428c, osa-MIR1428d, osa-MIR1428e, osa-MIR1874, osa-MIR2055, osa-MIR827, osa-MIR1428f, osa-MIR1428g, zma-MIR396d, osa-MIR396d, zma-MIR156l, zma-MIR159e, zma-MIR159f, zma-MIR159g, zma-MIR159h, zma-MIR159i, zma-MIR159j, zma-MIR159k, zma-MIR164e, zma-MIR164f, zma-MIR164g, zma-MIR164h, zma-MIR166n, zma-MIR169l, zma-MIR169m, zma-MIR169n, zma-MIR169o, zma-MIR169p, zma-MIR169q, zma-MIR169r, zma-MIR393b, zma-MIR393c, zma-MIR395d, zma-MIR395e, zma-MIR395f, zma-MIR395g, zma-MIR395h, zma-MIR395i, zma-MIR395j, zma-MIR395k, zma-MIR395l, zma-MIR395m, zma-MIR395n, zma-MIR395o, zma-MIR395p, zma-MIR827, osa-MIR395x, osa-MIR395y, zma-MIR444a, zma-MIR444b
The most abundant were osa-miR169, encoded by a large multigene family, which was cloned 117 times and osa-miR168 that we cloned 40 times (result not shown). [score:1]
The most abundant species in our libraries were osa-miR169 and miR168 that we cloned 117 and 40 times respectively (result not shown). [score:1]
[1 to 20 of 2 sentences]
28
[+] score: 2
miR169 is one of the largest miRNA families that is conserved in all plant species and significantly contributes to proper plant development and in plant response to environmental stress [174]. [score:2]
[1 to 20 of 1 sentences]
29
[+] score: 1
In rice, miR169g was confirmed as the only drought -induced member of the miR169 family [17]. [score:1]
[1 to 20 of 1 sentences]
30
[+] score: 1
6 −31.1 0.713302752293578 zma-miR164h-5p Li_TCONS_00031357 1-20 −43.6 −31.1 0.713302752293578 zma-miR166g-5p Li_TCONS_00014574 19-43 −37.9 −25.6 0.675461741424802 zma-miR166n-5p Boerner_Z27kG1_07658 926-945 −40.9 −28.9 0.706601466992665 zma-miR166n-5p Boerner_Z27kG1_17312 433-455 −40.9 −29.2 0.713936430317848 zma-miR167e-3p zhang_TCONS_00077767 493-515 −38.6 −25.5 0.660621761658031 zma-miR167f-3p Boerner_Z27kG1_02792 196-221 −43.5 −28.3 0.650574712643678 zma-miR167j-3p Li_TCONS_00096821 264-283 −32.4 −21.48 0.662962962962963 zma-miR169i-3p:zma-miR169j-3p:zma-miR169k-3p Boerner_Z27kG1_15115 783-800 −36.5 −26.1 0.715068493150685 zma-miR169i-3p:zma-miR169j-3p:zma-miR169k-3p Li_TCONS_00032815 227-244 −36.5 −25 0.684931506849315 zma-miR169i-3p:zma-miR169j-3p:zma-miR169k-3p Li_TCONS_00091165 524-540 −36.5 −24.2 0.663013698630137 zma-miR169l-5p Li_TCONS_00023317 7-30 −40. [score:1]
[1 to 20 of 1 sentences]
31
[+] score: 1
In maize, drought stress -induced promotion of root growth is supposed to be affected by ABA-responsive miR169 family members that control general transcription factors of the NF-YA type [8]. [score:1]
[1 to 20 of 1 sentences]